Рафаель Роузен - Математика для гиков
- Название:Математика для гиков
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2016
- Город:Москва
- ISBN:978-5-17-096852-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рафаель Роузен - Математика для гиков краткое содержание
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.
Математика для гиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Математическое понятие: числовые головоломки
Судоку – это, возможно, одна из самых наших любимых головоломок, но это не просто способ убить несколько свободных секунд (или часов). Затягивающая числовая головоломка также содержит в себе некоторые интересные математические крупицы.
Судоку состоит из сетки 9 × 9, один квадрат состоит из меньшей сетки 3 × 3. В каждом квадрате игрок должен заполнить клетки цифрами от 1 до 9 так, что каждое число появляется только один раз в ряду и колонке всего большого квадрата. Кроме того, каждое число должно появляться один раз в каждом квадрате 3 × 3. Создатель головоломки раскидывает несколько цифр в квадрате, они являются подсказками, которые помогают игроку решить задачу. Еще одной особенностью судоку является то, что у каждой головоломки есть только одно решение.
Группа математиков во главе с Гэри МакГуайром из Дублинского университетского колледжа обнаружила, что минимальное количество подсказок, нужное для уникального – то есть единственного – решения, равно 17. Если в головоломке меньше подсказок, то у нее не может быть уникального решения. Однако МакГуайр и его команда не смогли найти этому доказательства. Вместо этого они использовали грубую вычислительную мощность для поиска по всем возможным сеткам судоку. На самом деле, они потратили 7 миллионов часов вычислительного времени в Дублинском центре высокопроизводительных вычислений. Им была необходима вся компьютерная мощность, которую они могли использовать, так как число возможных раскладок судоку огромно: 6 670 903 752 021 072 936 960. Однако исследователям удалось уменьшить это число до более приемлемого размера с помощью алгоритма, основанного на принципе, что некоторые раскладки математически эквивалентны.
Все это показывает, что даже развлечение в вашей газете может содержать в себе интересную математику.
В 2002 году математики утвердили, что судоку является NP-полной задачей. (NP – недетерминированное полиномиальное время.) Что это значит? В сущности, не существует быстрого и легкого пути решения судоку, даже если очень легко определить, является ли данное решение правильным. NP время очень длительное. Что это значит для судоку? Что не существует быстрого и легкого пути решения судоку, даже если очень легко определить, является ли данное решение правильным.

3.10. Математические примеры в работах Ван Гога
Математическое понятие: турбулентность
«Звездная ночь» – это одна из самых красивых и знаковых работ Ван Гога, но в последнее время она известна не только за свою красоту, но также за скрытую в ней математику.
Оказывается, закрученные узоры в «Звездной ночи», а также в «Пшеничном поле с воронами» и в «Дороге с кипарисом и звездой» (две другие картины Ван Гога) демонстрируют странное сходство с турбулентными потоками. Такой вид движения, как турбулентность, можно увидеть в речном водовороте или в дыме от костра. Турбулентность также возникает в движении жидкости в трубах, а из-за турбулентного перемешивания теплого и холодного воздуха в атмосфере мы иногда чувствуем, как самолет начинает трясти во время полета. Хотя турбулентность – понятие обычное, описать его с помощью математики крайне сложно. Чтобы это сделать, математики должны понять решение уравнения Навье-Стокса, сформулированное в 1800-х, оно описывает движения жидкостей. На самом деле, эти уравнения очень сложно решить. (Существует история с участием турбулентности и физика Вернера Гейзенберга. Когда у него поинтересовались, что бы он спросил у Бога, если бы представилась такая возможность, Гейзенберг сказал: «Когда я встречусь с Богом, я задам ему два вопроса: почему теория относительности? И почему турбулентность? Я, правда, думаю, что у него будет ответ на первый вопрос».)
Чтобы определить, совпадают ли узоры в «Звездной ночи» с характеристиками турбулентного потока, ученые исследовали яркость красок, оставленных кистями Ван Гога. Они изучили цифровую версию его картины и сравнили яркость пикселей в пределах изображения. Они обнаружили, что схема яркости соответствует уравнениям, сформулированным в 1940-х русским математиком Андреем Колмогоровым, когда он пытался понять турбулентность, используя статистику. Так что живописная манера Ван Гога действительно имеет глубокое значение.
Андрей Колмогоров родился в 1903 году и был сыном сельского исследователя. У Колмогорова были разные интересы: в математике, среди прочего, он изучал теорию вероятности, топологию и турбулентность. Он также посвятил себя изучению истории и реформированию образования в Советском Союзе. Он умер в 1987 году.

8.11. Почему пройти поперек комнаты – это математический подвиг для вас?
Математические понятия: апории Зенона, бесконечность, бесконечный ряд
Если вы сейчас сидите – встаньте и сделайте несколько шагов. Простое действие – передвижение из одной точки в другую – было предметом математических и философских размышлений более 2000 лет назад для Зенона Элейского. Зенон жил в Древней Греции предположительно во времена Сократа, хотя и не существует достоверных данных о его жизни. Зенон хорошо известен за разработку серии парадоксов, направленных на стимулирование нашего мышления о понятиях, какие мы можем иметь о мире, в котором живем. Парадоксы затрагивают понятия движения и времени и, следовательно, включают математические идеи о бесконечности.
Первая апория о движении представляет собой аргумент, согласно которому движение невозможно. Представим, что вы хотите дойти от кресла до двери. Для этого вы, естественно, должны сначала дойти до середины между двумя объектами. Но перед тем, как вы дойдете до этой точки, вы должны дойти до другой точки, той, что лежит между серединой и вашей исходной позицией (что равно 1/4 пути до двери). Поэтому, чтобы пройти любое расстояние, вам нужно преодолеть бесконечное число расстояний, а так как невозможно выполнить бесконечное количество заданий, апория утверждает, что вы никогда не дойдете до двери.
Этот парадокс существует на протяжении столетий, так как не ясно, как его опровергнуть. Так как парадокс опирается на понятие, что пространство состоит из бесконечного числа единиц, кажется, что парадокс был сформулирован, чтобы указать на проблемы этого предположения. Аристотель предложил своего рода решение, когда утверждал, что расстояние между двумя точками не содержит фактической бесконечности, а содержит потенциальную бесконечность.
Читать дальшеИнтервал:
Закладка: