Саймон Сингх - Симпсоны и их математические секреты

Тут можно читать онлайн Саймон Сингх - Симпсоны и их математические секреты - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Симпсоны и их математические секреты
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-034-1
  • Рейтинг:
    2.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Саймон Сингх - Симпсоны и их математические секреты краткое содержание

Симпсоны и их математические секреты - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты - читать онлайн бесплатно полную версию (весь текст целиком)

Симпсоны и их математические секреты - читать книгу онлайн бесплатно, автор Саймон Сингх
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эмили.Хотелось бы мне, чтобы геометрия была такой же легкой, как испанский язык.

Грейси.Так, может, я тебе помогу? Скажи мне что-нибудь на языке геометрии.

Эмили.Сказать что-нибудь на языке геометрии?

Грейси.Да, давай же.

Эмили.Ну хорошо. Ммм… π r ².

Грейси.И этому учат сейчас в школе? π r ²?

Эмили. Да.

Грейси.Эмили, пирог круглый. Печенье круглое. Крекеры квадратные.

В основе этой шутки лежит похожее звучание слова pie («пирог») и названия буквы π, что и служит поводом для каламбура. Следовательно, комики должны быть благодарны Уильяму Джонсу за введение символа π. Этот математик XVIII столетия, так же как и многие другие ученые, зарабатывал себе на жизнь уроками в лондонских кофейнях, посетители которых должны были заплатить за вход один пенни. Преподавая в этих так называемых грошовых университетах, Джонс параллельно работал над крупным научным трудом под названием A New Introduction to the Mathematics («Новое введение в математику»). Именно в этой книге он впервые использовал греческую букву π в контексте обсуждения геометрии круга. В итоге появилась почва для новых математических каламбуров. Джонс выбрал символ π, потому что это начальная буква греческого слова περιφερια (периферия), что означает «окружность».

* * *

За три года до появления шутки с числом π в эпизоде «Человек-пирог» авторы «Симпсонов» уже упоминали это число в серии «Пока, пока, зубрила» (Bye, Bye, Nerdie, сезон 12, эпизод 16; 2001 год). Но на этот раз вместо воскрешения старой шутки сценаристы создали совершенно новую, хотя и основанную на одном любопытном случае из истории числа π. Для того чтобы оценить ее по достоинству, сперва необходимо вспомнить значение числа π и то, как оно измерялось на протяжении столетий.

Я уже говорил, что π = 3,14 – всего лишь приближенное значение. Дело в том, что π – иррациональное число, то есть назвать его абсолютно точное значение невозможно, поскольку в нем бесконечное количество десятичных знаков, в которых отсутствует какая-либо закономерность. Тем не менее математики прошлого ставили перед собой задачу выйти за рамки существующей приближенной оценки 3,14 и поймать это ускользающее число, рассчитав его максимально точное значение.

Первую серьезную попытку это сделать предпринял Архимед в третьем столетии до нашей эры. Он понимал, что точность измерения π зависит от точности измерения длины окружности. Но это весьма сложная задача, так как окружность состоит из кривых малой кривизны, а не из прямых линий. Важным достижением Архимеда стало решение обойти проблему измерения кривых путем аппроксимации окружности прямыми линиями.

Возьмем окружность, диаметр которой ( d ) равен единице. Мы знаем, что C = π d , а значит, длина окружности ( С ) равна π. Затем нарисуем два квадрата, один за пределами окружности и один внутри нее.

Безусловно настоящая окружность должна быть меньше периметра большего квадрата - фото 4 Безусловно настоящая окружность должна быть меньше периметра большего квадрата - фото 5

Безусловно, настоящая окружность должна быть меньше периметра большего квадрата и больше периметра меньшего квадрата. Таким образом, измерив периметры двух квадратов, мы получим верхний и нижний пределы длины окружности.

Периметр большего квадрата измеряется легко, поскольку каждая его сторона имеет ту же длину, что и диаметр круга, который, как нам известно, равен единице. Следовательно, периметр большего квадрата составляет 4 × 1 = 4 единицы.

Периметр меньшего квадрата вычислить несколько труднее, но мы можем определить длину каждой его стороны с помощью теоремы Пифагора. Очень кстати, что диагональ квадрата и две его стороны образуют прямоугольный треугольник, гипотенуза ( H ) которого не только совпадает с диагональю квадрата, но и имеет ту же длину, что и диаметр окружности, то есть единицу. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов его катетов. Если мы обозначим их символом S , то H ² = S ² + S ². Если H = 1, то две другие стороны должны иметь длину 1/√2 единиц. Следовательно, периметр меньшего квадрата равен 4 × 1/√2 = 2,83 единицы.

Учитывая, что длина окружности должна быть меньше периметра большого круга и больше периметра малого, мы можем с уверенностью заявить, что она должна попадать в промежуток от 2,83 до 4,00.

Не забывайте: ранее мы утверждали, что длина окружности диаметром 1 единица равна π, поэтому значение π должно находиться между 2,83 и 4,00.

В этом и состояло великое открытие Архимеда.

Возможно, оно не произвело на вас особого впечатления, ведь мы уже знаем, что π равно примерно 3,14, так что нижний предел 2,83 и верхний – 4,00 не представляют для нас никакого интереса. Однако сила открытия Архимеда состояла в том, что его результат подлежал уточнению. Вместо того чтобы размещать окружность между большим и малым квадратами, Архимед разместил ее между большим и малым шестиугольниками. Если у вас есть десять свободных минут и вы уверенно оперируете числами, то можете попробовать сами доказать, что по результатам измерения периметра этих двух шестиугольников значение числа π должно быть больше 3,00 и меньше 3,464.

У шестиугольника больше сторон чем у квадрата что делает его более точным - фото 6

У шестиугольника больше сторон, чем у квадрата, что делает его более точным приближением к окружности. Это объясняет, почему шестиугольник позволяет вычислить более узкие пределы для значения π. Тем не менее и в этом случае имеет место значительная погрешность. Поэтому Архимед продолжал расчеты, применяя этот метод снова и снова и увеличивая количество сторон многоугольника, благодаря чему получал все более точное приближение к окружности.

В конечном итоге упорство привело Архимеда к тому, что он заключил окружность между двумя многоугольниками с 96 сторонами и рассчитал периметр обеих фигур. Это было впечатляющее достижение, особенно учитывая, что Архимед не имел современной алгебраической системы обозначений, ничего не знал об арифметических действиях с десятичными дробями и ему приходилось выполнять все эти громоздкие вычисления вручную. Однако работа стоила затраченных усилий, поскольку ему удалось заключить значение числа π между числами 3,141 и 3,143.

Через восемь столетий, в V веке нашей эры, китайский математик Цзу Чунчжи развил подход Архимеда на шаг дальше (или на 12 192 шага, если точнее), использовав два многоугольника с 12 288 сторонами для доказательства того, что значение числа π лежит между числами 3,1415926 и 3,1415927.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Симпсоны и их математические секреты отзывы


Отзывы читателей о книге Симпсоны и их математические секреты, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x