Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы ответить на этот вопрос, тот, кто был уже знаком с геометрией, стал бы рассуждать таким образом. Есть вероятность, что предмет A не пошевелился между моментами α и α’, а также предмет B – между моментами β и β’; допустим это. В момент α предмет A занимал некоторую точку пространства M . Но в этот момент он касался моего первого пальца, и так как осязание не действует на расстоянии , то мой первый палец был также в точке М . Затем я сделал ряд движений S и в конце этого ряда в момент α’ констатировал, что предмет A касается моего второго пальца. Я заключил отсюда, что этот второй палец находился тогда в M , т. е. что движениями S второй палец был приведен на место первого. В момент β предмет B пришел в соприкосновение с моим вторым пальцем; так как я не шевелился, то этот второй палец остался в M ; поэтому предмет B пришел в M ; по предположению он не двигается до момента β’. Но между моментами β и β’ я сделал движения S’ ; так как эти движения обратны движениям S , то они должны в результате привести первый палец на место второго. В момент β’ первый палец, следовательно, будет в M ; и так как предмет B также находится в M , то этот предмет B коснется моего первого пальца. Таким образом, на предложенный вопрос надо ответить утвердительно.
Мы, не знакомые еще с геометрией, не можем рассуждать таким образом, но мы констатируем, что это предположение обыкновенно осуществляется, а исключения мы всегда можем объяснить тем, что предмет A между моментами α и α’ или предмет B между моментами β и β’ пошевелился.
Но не мог ли бы опыт дать противоположный результат – и явился ли бы этот последний сам по себе нелепым? Очевидно, нет. Как бы мы поступили в том случае, если бы опыт дал этот противоположный результат? Сделалась ли бы невозможной всякая геометрия? Ничуть! Мы ограничились бы заключением, что осязание может действовать на расстоянии .
Когда я говорю, что осязание не действует на расстоянии, зрение же действует на расстоянии, то это утверждение имеет только следующий смысл. Для того чтобы узнать, занимает ли B в момент β точку, которую занимал A в момент α, я могу пользоваться множеством различных критериев; в один входит мой глаз; в другой – мой первый палец, в третий – мой второй палец и т. д. Так вот, достаточно, чтобы критерий, относящийся к одному из моих пальцев, был удовлетворен, чтобы были удовлетворены все прочие критерии; но этого не достаточно, чтобы был удовлетворен критерий, относящийся к глазу. Вот смысл моего утверждения; я ограничиваюсь утверждением экспериментального факта, который обыкновенно подтверждается.
В конце предыдущей главы мы сделали анализ визуального пространства; мы видели, что для того, чтобы создать это пространство, нужно ввести ощущения сетчатки, ощущение схождения глазных осей и ощущение аккомодации; что если бы два последних ощущения не были всегда в согласии между собой, то визуальное пространство имело бы четыре измерения вместо трех и что, с другой стороны, если бы вводились только ощущения сетчатки, то получилось бы «чистое визуальное пространство», которое обладало бы только двумя измерениями. С другой стороны, рассмотрим тактильное пространство, ограничиваясь ощущениями только одного пальца, т. е. вообще совокупностью положений, которые может занимать этот палец. Это тактильное пространство, которое мы подвергнем анализу в следующем параграфе и о котором поэтому я попрошу позволения пока не распространяться, имеет три измерения. Почему пространство в собственном смысле имеет столько же измерений, сколько тактильное пространство, и более, чем чистое визуальное пространство? Потому, что осязание не действует на расстоянии, тогда как зрение действует на расстоянии. Эти два утверждения имеют только один и тот же смысл, и мы сейчас видели, каков он.
Теперь я возвращусь к тому пункту, которого я только слегка коснулся, чтобы не прерывать исследования. Откуда мы знаем, что впечатления, произведенные A на нашу сетчатку в момент α и B – в момент β, переданы нам одним и тем же волокном сетчатки, хотя эти впечатления качественно различны? Я высказал простую гипотезу, но прибавил, что другие, значительно более сложные, кажутся мне более вероятными. Вот в чем состоят эти гипотезы, о которых я уже упоминал. Откуда мы знаем, что имеют нечто общее впечатления, произведенные красным предметом A в момент α и синим предметом B в момент β, если эти два предмета образовали свое изображение в одной и той же точке сетчатки? Можно отбросить простую гипотезу, которую я высказал выше, и допустить, что эти два качественно различных впечатления переданы мне двумя различными, хотя и смежными, нервными волокнами.
Тогда каким средством обладаю я для того чтобы знать, что эти волокна смежны? Вероятно, мы не имели бы никакого средства, если бы глаз был неподвижен. Движения глаза научили нас, что отношение между ощущением синего в точке A и ощущением синего в точке B сетчатки то же, что между ощущением красного в точке A и ощущением красного в точке В . Они действительно показали нам, что те же самые движения, соответствующие тем же самым мускульным ощущениям, осуществляют переход от первого ко второму или от третьего к четвертому. Я не останавливаюсь на этих соображениях, которые, очевидно, находятся в связи с вопросом о местных знаках, поднятым Лоце.
Итак, я умею распознавать тождественность двух точек – точки, занимаемой A в момент α, и точки, занимаемой B в момент β, но при условии , что между моментами α и β я остаюсь неподвижным. Этого недостаточно для нашей цели. Предположим же, что я совершил в промежутке между этими двумя моментами какое-нибудь движение; как я узнаю, тождественна ли точка, занимаемая A в момент α, точке, занимаемой B в момент β? Я предполагаю, что в момент α предмет A находился в соприкосновении с моим первым пальцем и что в момент β предмет B также касается этого первого пальца; но в то же время мое мускульное чувство сообщило мне, что в промежутке мое тело пошевелилось. Выше я рассмотрел два ряда мускульных ощущений S и S’ и сказал, что иногда приходится рассматривать два подобных ряда S и S’ как обратные друг другу вследствие того, что мы часто наблюдали восстановление наших первоначальных ощущений, когда эти два ряда следуют один за другим.
Пусть мое мускульное чувство сообщило мне, что между моментами α и β я пошевелился, но так, что я последовательно почувствовал два ряда мускульных ощущений S и S’ , которые я считаю обратными; тогда я сделаю еще вывод – как если бы я не шевелился, – что точки, занимаемые A в момент α и В в момент β, тождественны, если я констатирую, что мой первый палец касается A в момент α и В в момент β.
Читать дальшеИнтервал:
Закладка: