Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
- Название:Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2021
- Город:Москва
- ISBN:978-5-00100-388-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.
Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
1. Новые приложения анализа к общественным наукам, музыке, искусству и гуманитарным дисциплинам.
2. Продолжение использования анализа в медицине и биологии.
3. Преодоление случайностей, присущих финансам, экономике и погоде.
4. Анализ на службе больших данных и наоборот.
5. Постоянная работа с нелинейностью, хаосом и сложными системами.
6. Развитие партнерства между анализом и компьютерами, включая искусственный интеллект.
7. Расширение границ анализа в квантовой области.
Это очень широкий охват. И, вместо того чтобы говорить понемногу о каждой из упомянутых тем, я сосредоточусь на некоторых из них. После краткого знакомства с дифференциальной геометрией ДНК, где тайна кривых встречается с тайной жизни, мы рассмотрим ряд исследований, которые, я надеюсь, вы сочтете представляющими интерес с философской точки зрения. К ним относятся проблемы прогнозов, связанные с увеличением хаоса, теорией сложности, компьютерами и искусственным интеллектом. Однако для того, чтобы все это обрело смысл, нам нужно рассмотреть основы нелинейной динамики. Изучение такого контекста позволит лучше понять стоящие перед нами задачи.
Анализ традиционно применялся в «точных» науках – физике, астрономии и химии. Но в последние десятилетия проник в биологию и медицину – в такие области, как эпидемиология, популяционная биология, нейробиология и диагностическая визуализация. На протяжении всего нашего рассказа мы сталкивались с примерами математической биологии, начиная от использования анализа для прогнозирования результатов лицевой пластики до моделирования борьбы ВИЧ с иммунной системой. Однако все они были связаны с какими-либо аспектами загадки изменения, самой современной навязчивой идеи анализа. Следующий же пример взят из старой загадки кривых, которая обрела новую жизнь в трехмерной структуре ДНК.
Загадка связана с тем, как молекула ДНК, аномально длинная и содержащая всю генетическую информацию о человеке, упакована в клетках. Каждая из примерно 10 триллионов клеток нашего организма содержит около двух метров ДНК. Если уложить эти молекулы последовательно друг за другом, то они дойдут до Солнца и обратно несколько десятков раз. Скептик может возразить, что на деле это сравнение вовсе не так впечатляюще, как звучит: оно просто отражает огромное количество клеток в нашем организме. Более информативное сравнение – с размером клеточного ядра, контейнера, содержащего ДНК. Диаметр типичного ядра – около пяти миллионных метра, то есть оно в 400 тысяч раз меньше, чем ДНК, которая должна туда помещаться. Такой коэффициент сжатия эквивалентен тому, как если бы мы в теннисный мячик пытались впихнуть 30-километровую веревку. К тому же ДНК нельзя набивать в ядро случайным образом. Молекула не должна запутываться. Упаковывать надо упорядоченно, чтобы ферменты могли ее читать и переводить в белки, необходимые для функционирования клетки. Упорядоченная упаковка также важна для того, чтобы ДНК можно было аккуратно копировать, когда клетка готова делиться.
Эволюция решила проблему упаковки с помощью катушек – то же самое решение мы используем при хранении длинного куска нитки. ДНК в клетках намотана на «молекулярные катушки», состоящие из особых белков, именуемых гистонами. Чтобы добиться дальнейшей компактности, эти катушки соединяются встык, как бусины на ожерелье, а затем ожерелье сворачивается в шнуровидные волокна, которые сами скручиваются в хромосомы. Эти витки витков витков уплотняют ДНК настолько, что она помещается в тесную квартирку ядра.
Однако катушки не были исходным решением проблемы упаковки, предложенным природой. Самые ранние существа на Земле были одноклеточными организмами, лишенными ядер и хромосом. У них не было катушек, как их нет у современных бактерий и вирусов. В таких случаях генетический материал уплотняется с помощью механизма, основанного на геометрии и упругости. Представьте, что вы туго натянули резиновую ленту, а затем закручиваете ее с одного конца, удерживая пальцами. Сначала при каждом последовательном повороте резиновая лента дает оборот вокруг оси. Эти обороты копятся, но резиновая лента остается прямой до тех пор, пока такое скручивание не достигнет некоего порога. Здесь резинка внезапно переходит в третье измерение и начинается извиваться, словно корчась от боли. Такое скручивание приводит к скомкиванию и компактификации ленты. То же самое делает и ДНК.
Это явление известно как сверхспирализация. Оно часто встречается в циклах ДНК. Хотя мы склонны представлять ДНК в виде вытянутой молекулы с двумя свободными концами, во многих случаях она замыкается, образуя кольцо. Это похоже на то, как если бы вы взяли ремень, перекрутили один его конец на несколько оборотов, а потом застегнули пряжку. После этого число оборотов у ремня не изменить. Оно фиксировано. Если вы станете где-нибудь перекручивать ремень, то в другом месте появятся встречные перекручивания, чтобы компенсировать ваши. Здесь работает закон сохранения. То же самое происходит, когда вы храните садовый шлаг уложенным на полу кольцами друг на друга. При попытке вытянуть шланг в прямую он начнет скручиваться у вас в руках – кольца преобразуются в скручивания. Преобразование может также идти в другом направлении, от скручиваний к кольцам, как с резиновой лентой, которая после ряда скручиваний начинает изгибаться в пространстве. ДНК примитивных организмов использует такое изгибание. Определенные ферменты могут разрез а ть ДНК, скручивать ее, а затем снова склеивать. Когда молекула ДНК для минимизации энергии ослабляет скручивание, закон сохранения приводит к сверхспирализации молекулы – в итоге она становится более компактной. Получающаяся линия молекулы ДНК больше не лежит в одной плоскости, а изгибается в трех измерениях.
В начале 1970-х американский математик Брок Фуллер дал первое математическое описание трехмерного искажения ДНК. Он предложил величину, которую назвал индексом сверхспирализации ДНК [309], и вывел для нее формулы, используя производные и интегралы, а также доказал ряд теорем об этой величине, которые формализовали закон сохранения для скручиваний и колец спирали. С тех пор изучение геометрии и топологии ДНК [310] – процветающая область науки. С помощью теории узлов математики [311]выяснили механизмы определенных ферментов, которые могут скручивать ДНК, разрезать ее, вносить в нее узлы или связи. Такие ферменты изменяют топологию ДНК и поэтому называются топоизомеразами. Они могут разорвать нити ДНК и снова восстановить их и важны для деления и роста клеток. Они оказались эффективными мишенями для химиотерапевтических препаратов против рака [312]. Механизм действия не вполне ясен, но считается, что такие препараты (ингибиторы топоизомеразы), блокируя действие топоизомеразы, могут селективно повреждать ДНК раковых клеток, что заставляет их совершать самоубийство. Хорошие новости для пациента, плохие – для опухоли.
Читать дальшеИнтервал:
Закладка: