Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Тут можно читать онлайн Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Бахрах-М», 2001.
  • Год:
    2001
  • Город:
    Самара
  • ISBN:
    ISBN 5-94648-001-4
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Числа ТТЧ: рекурсивно счетное множество чисел

С такой точки зрения, приведенная выше деривация теоремы «362,123,666,112,123,666,323,111,123,123,666» представляет собой последовательность весьма сложных теоретико-численных трансформаций, каждая из которых действует на одно или более данных чисел. Результатом этих трансформаций является, как и ранее, выводимое число , или, более точно, число ТТЧ . Некоторые арифметические правила берут старое число ТТЧ и увеличивают его определенным образом, чтобы получить новое число ТТЧ, некоторые уменьшают старое число ТТЧ; другие правила берут два числа ТТЧ, воздействуют на них определенным образом и комбинируют результаты, получая новое число ТТЧ — и так далее, и тому подобное. Вместо того, чтобы начинать с одного известного числа ТТЧ, мы начинаем с пяти — одно для каждой аксиомы (в строгой нотации). На самом деле, арифметизированная ТТЧ очень похожа на арифметизированную систему MIU— только в ней больше аксиом и правил, и запись точных арифметических эквивалентов была бы титаническим и совершенно «непросветляющим» трудом. Если вы внимательно следили за тем, как это было сделано для системы MIU, у вас должно быть сомнений в том, что здесь это делается совершенно аналогично.

Эта «гёделизация» ТТЧ порождает новый теоретико-числовой предикат:

а — число ТТЧ.

Например, мы знаем из предыдущей деривации, что 362,123,666,112,123,666,323,111,123,123,666 является числом ТТЧ, в то время как число 123,666,111,666числом ТТЧ предположительно не является.

Оказывается, что этот новый теоретико-численный предикат можно выразить некоей строчкой ТТЧ с одной свободной переменной — скажем, а . Мы могли бы поставить тильду впереди, и эта строчка выражала бы дополняющее понятие:

а — не число ТТЧ.

Теперь давайте заменим все а в этой второй строчке на символ числа ТТЧ для 123,666,111,666 — символ, содержащий ровно 123,666,111,666 Sи слишком длинный, чтобы его здесь записывать. У нас получится строчка ТТЧ, которая, подобно МУМОНу, может быть интерпретирована на двух уровнях. Во-первых, она будет означать

123,666,111,666 — не число ТТЧ.

Но, благодаря изоморфизму, связывающему числа, ТТЧ с теоремами ТТЧ, у этой строчки есть и второе значение:

S0=0 не теорема ТТЧ.

ТТЧ пытается проглотить саму себя

Это неожиданно двусмысленное толкование показывает, что ТТЧ содержит строчки, говорящие о других строчках ТТЧ. Иными словами, метаязык, на котором мы можем говорить о ТТЧ, берет начало, хотя бы частично, внутри самой ТТЧ. И это не случайность; дело в том, что архитектура любой формальной системы может быть отражена в Ч (теории чисел). Это такая же неизбежная черта ТТЧ, как колебания, вызываемые в патефоне, проигрываемой на нем пластинкой. Кажется, что колебания должны вызываться внешними причинами, — например, прыжками детей или ударами мяча; но побочный — и неизбежный — эффект произведения звуков заключается в том, что они заставляют колебаться сам механизм, их порождающий. Это не случайность, а закономерный и неизбежный побочный эффект. Он свойствен самой природе патефонов. И так же самой природе любой формализации теории чисел свойственно то, что ее метаязык содержится в ней самой.

Мы можем почтить это наблюдение, назвав его Центральной Догмой Математической Логики и изобразив его на двухступенчатой диаграмме.

ТТЧ ==> Ч ==> мета-ТТЧ

Иными словами, у строчки ТТЧ есть интерпретация в Ч, а у высказывания Ч может быть второе значение — оно может быть понято как высказывание о ТТЧ.

G: строчка, говорящая о себе самой на коде

Эти интересные факты — только половина истории. Другая половина — интенсификация автореференции. Мы сейчас находимся в положении Черепахи, когда она обнаружила, что можно создать пластинку, разбивающую проигрывающий ее патефон. Вопрос только в том, какую именно запись надо ставить на данный патефон. Выяснить это непросто.

Для этого нужно найти строчку ТТЧ — мы будем называть ее «G» — которая говорит о себе самой, в том смысле, что — одно из ее пассивных значений — это высказывание о G.

В частности, этим пассивным значением окажется

«G- не теорема ТТЧ»

Я должен добавить, что у G есть и другое пассивное значение, являющееся высказыванием теории чисел ; подобно тому, как МУМОН мог быть интерпретирован двояко. Важно то, что каждое пассивное значение — действительно и полезно, и никоим образом не бросает тень сомнения на второе значение. (Тот факт, что играющий патефон может вызывать колебания в самом себе и в пластинке, не отрицает того, что эти колебания — музыкальные звуки!)

В неполноте ТТЧ виновато существование G

Об изобретательном методе создания G и о некоторых важных понятиях ТТЧ мы поговорим в главах XIII и XIV; пока же давайте заглянем вперед и постараемся увидеть, какие последствия будет иметь нахождение автореферентной часта ТТЧ. Кто знает — может быть, это будет подобно взрыву! В некотором роде, это так и есть. Как вы думаете,

Является ли G теоремой ТТЧ, или нет?

Постарайтесь сформировать собственное мнение по этому поводу, не опираясь на мнение G о себе самой. В конце концов, G может понимать себя не лучше, чем понимает себя какой-нибудь мастер дзен-буддизма. Подобно МУМОНу, G может быть ложным утверждением. Подобно MU, G может быть не-теоремой. Мы не обязаны верить в любую возможную строчку ТТЧ, а только в ее теоремы. Давайте используем наше умение рассуждать логически и постараемся разъяснить этот вопрос.

Предположим, как обычно, что ТТЧ включает правильные методы рассуждения и что, следовательно, ложные утверждения не могут являться ее теоремами. Иными словами, любая теорема ТТЧ выражает истину. Таким образом, если бы строчка G была теоремой, она выражала бы истину, а именно: «G — не теорема.» Вся сила ее автореферентности видна здесь в действии. Будучи теоремой, G должна быть ложна. Опираясь на наше предположение, что ТТЧ не имеет ложных теорем, мы должны теперь заключить, что G — не теорема . Это не так страшно, но оставляет нас с меньшей проблемой. Зная, что G — не теорема, мы должны согласиться с тем, что она выражает истину… В этой ситуации ТТЧ не оправдывает наших ожиданий — мы нашли строчку, выражающую истинное высказывание, которая в то же время не является теоремой! И, как бы мы не удивлялись, мы не должны упускать из виду тот факт, что у G есть также и арифметическая интерпретация. Это позволяет нам подвести итог нашим наблюдениям:

Найдена такая строчка ТТЧ, которая является недвусмысленным высказыванием о некоторых арифметических свойствах натуральных чисел; более того, рассуждая вне системы, мы можем определить не только то, что это высказывание истинно, но и то, что эта строчка не является теоремой ТТЧ. Таким образом, если мы спросим у ТТЧ, истинно ли это высказывание, она не сможет ответить ни да, ни нет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы


Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x