Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Тут можно читать онлайн Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Бахрах-М», 2001.
  • Год:
    2001
  • Город:
    Самара
  • ISBN:
    ISBN 5-94648-001-4
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(6) 3010010 правило 2 ( m = 3, n = 10)

(7) 30110 правило 4 ( m = 2, n = 10, k = 301)

Обратите внимание на то, что удлиняющие и укорачивающие правила снова с нами и в системе 301; они просто переведены в область чисел таким образом, что Гёделевы номера в системе возрастают и уменьшаются. Если вы посмотрите внимательно на то, что происходит, то увидите, что правила основаны на простой идее, а именно: сдвиг цифр направо и налево в десятичной записи чисел имеет отношение к умножению на степени числа 10. Это простое наблюдение обобщено в следующем центральном предложении:

ЦЕНТРАЛЬНОЕ ПРЕДЛОЖЕНИЕ: Если у нас имеется некоторое правило, говорящее нам, как определенные цифры могут быть передвинуты, заменены, добавлены или опущены в в десятичной записи любого числа, то это правило также может быть представлено соответствующим арифметическим правилом при помощи арифметических операций со степенями числа 10, а также сложения, вычитания и так далее.

Или короче:

Типографские правила манипуляции с символами чисел эквивалентны арифметическим правилам операций с числами .

Это простое наблюдение находится в самом сердце Гёделева метода; оно будет иметь совершенно потрясающий эффект. Оно говорит нам, что если у нас есть Гёделева нумерация для любой формальной системы, мы можем тут же получить набор арифметических правил, дополняющих Гёделев изоморфизм. В результате оказывается возможным перевести изучение любой формальной системы — на самом деле, всех формальных систем — в область теории чисел.

Числа, выводимые в MIU

Подобно тому, как набор типографских правил порождает набор теорем, в результате повторного применения арифметических правил получается соответствующее множество натуральных чисел. Эти выводимые числа играют ту же роль в теории чисел, как теоремы — в любой формальной системе. Разумеется, набор выводимых чисел изменяется в зависимости от принятых правил. «Выводимые числа» выводимы только относительно данной системы арифметических правил. Например, такие числа как 31, 3010010, 31111и так далее могут быть названы выводимыми в системе MIU. Это неуклюжее название можно сократить до чисел MIU; оно символизирует тот факт, что эти числа — результат перевода системы MIUв теорию чисел при помощи Гёделевой нумерации. Если бы мы захотели приложить Гёделеву нумерацию к системе prи затем «арифметизировать» ее правила, мы могли бы называть полученные числа «числами pr» — и так далее.

Заметьте, что выводимые числа (в любой данной системе) определяются рекурсивным методом: нам даны числа, о которых мы знаем, что они выводимы, и набор правил, объясняющих, как получить другие выводимые числа. Таким образом, класс выводимых чисел постоянно расширяется, подобно списку чисел Фибоначчи или чисел Q. Множество выводимых чисел любой системы — это рекурсивно счетное множество . А как насчет его дополнения — множества невыводимых чисел? Имеют ли они какую-либо общую арифметическую черту?

Подобные вопросы возникают тогда, когда изучение формальных систем переносится в область теории множеств. О каждой арифметизированной системе можно спросить: «Возможно охарактеризовать выводимые числа каким-либо простым способом?» «Возможно ли охарактеризовать невыводимые числа рекурсивно счетным способом?» Эти вопросы теории чисел весьма непросты, и, в зависимости от арифметизированной системы, могут оказаться для нас слишком трудными. Если и есть надежда найти на них ответ, то она лежит в методических логических рассуждениях, подобных тем, что обычно используются для изучения натуральных чисел. Суть этих рассуждений была изложена в предыдущей главе. По всей видимости, в ТТЧ нам удалось полностью представить все математические рассуждения в одной единственной компактной системе.

ТТЧ помогает ответить на вопросы о выводимых числах

Значит ли это, что одна-единственная формальная система — ТТЧ — предоставляет нам способ ответить на любой вопрос о любой формальной системе? Возможно. Возьмем например, такой вопрос:

Является ли MUтеоремой системы MIU?

Найти ответ на этот вопрос означало бы определить, является ли 30числом MIU. Поскольку это утверждение — высказывание теории чисел, мы должны надеяться, что при достаточном усилии нам удастся перевести высказывание «30 — число MIU» в нотацию ТТЧ, точно так же, как нам удалось перевести на язык ТТЧ другие высказывания теории чисел. Должен сразу предупредить читателя, что, хотя подобный перевод существует, он невероятно сложен. Если вы помните, в главе VIII я говорил, что даже такой простой арифметический предикат как «b — степень 10» весьма непросто перевести в ТТЧ; предикат же «30 — число MIU» перевести еще гораздо сложнее! Все же этот, перевод можно найти, и число SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS0 может быть подставлено в него вместо любого b . Результатом явилась бы МОНструозная строчка ТТЧ, говорящая о головоломке MU. Сдается мне, что подходящим названием для этой строчки было бы МУМОН. С помощью МУМОНа и подобных строчек ТТЧ теперь способна говорить в закодированной форме о системе MIU.

Дуалистическая природа МУМОНа

Чтобы извлечь какую-либо пользу из этой странной трансформации нашего первоначального вопроса, нам необходимо ответить еще на один вопрос:

Является ли МУМОН теоремой ТТЧ?

До сих пор мы всего лишь заменили короткую строчку (MU) на другую (монструозный МУМОН) и простую формальную систему ( MIU) — на более сложную (ТТЧ). Хотя мы перефразировали, вопрос, маловероятно, что это приблизило нас к ответу. Действительно, в ТТЧ есть такая куча укорачивающих и удлиняющих правил, что перифраз вопроса, скорее всего, окажется гораздо труднее оригинала. Некоторые читатели, пожалуй, могли бы сказать, что анализировать MUпои помощи МУМОНа — значит нарочно смотреть на вещи по-дурацки. Однако МУМОНа можно рассматривать более, чем на одном уровне.

Интересно то, что в МУМОНе есть два различных пассивных значения. Во-первых, приведенное выше:

30 — число MIU.

Во-вторых, мы знаем, что это высказывание изоморфно следующему:

MU— теорема системы MIU.

Следовательно, мы имеем право утверждать, что последнее высказывание — второе пассивное значение МУМОНа. Это может показаться странным, поскольку МУМОН состоит всего лишь из плюсов, скобок и тому подобных символов ТТЧ. Как же он может выражать что-либо, кроме арифметических высказываний?

На самом деле, это возможно. Так же, как одна единственная музыкальная строчка может заключать в себе гармонию и мелодию, как слово BACH может быть прочитано как имя и как мелодия, как одно и то же словосочетание может быть аккуратным описанием картины Эшера, структуры ДНК, произведения Баха или Диалога под тем же названием, МУМОН может быть понят, по крайней мере, двояко. Это происходит благодаря следующим фактам:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы


Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x