Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
предварение предиката им самим в кавычках (квайнирование) <==> Подстановка Гёделева номера открытой формулы в саму эту формулу (арифмоквайнирование)
После квайнирования производит ложное высказывание (предикат без подлежащего) <==> «дядя» G(открытая формула ТТЧ)
«После квайнирования производит ложное высказывание» (тот же предикат, квайнированныи) <==> номер d (Гёделев номер предыдущей открытой формулы)
«После квайнирования производит ложное высказывание» После квайнирования производит ложное высказывание <==> строчка G(высказывание ТТЧ, полученное путем подстановки d в «дядю», то есть, путем его арифмоквайнирования)
Поскольку интерпретация Gистинна, интерпретация ее отрицания ~G — ложна. Мы знаем, что в ТТЧ невозможно вывести ложные утверждения. Следовательно. ни G, ни ее отрицание ~Gне могут быть теоремами ТТЧ . Мы нашли в нашей системе «дыру» — неразрешимое суждение. Из этого следуют несколько фактов. Вот один из них, довольно любопытный: несмотря на то, что ни G, ни ее отрицание ~Gне являются теоремами ТТЧ, формула — теорема, поскольку из правил исчисления высказываний следует, что все правильно построенные формулы типа
V ~P>- теоремы.
Это — простой пример того случая, когда утверждение внутри системы и утверждение о системе противоречат друг другу. Возникает вопрос: действительно ли система верно отражает саму себя? Соответствует ли «отраженная метаматематика», существующая внутри ТТЧ, «обыкновенной», повседневной математики? Это было одним из вопросов, интересовавших Гёделя, когда он писал свою статью. В частности, он был заинтересован в том, возможно ли доказать в «отраженной метаматематике» непротиворечивость ТТЧ. Вспомните, что доказательство непротиворечивости систем было важным философским вопросом того времени. Гёдель нашел простой способ выразить высказывание «ТТЧ непротиворечива» в виде формулы ТТЧ; после чего он показал, что эта формула (как и все другие формулы, выражающие похожую идею) является теоремой ТТЧ только при одном условии: если ТТЧ противоречива . Этот еретический результат был тяжелым ударом для оптимистов, считавшим, что возможно найти строгое доказательство непротиворечивости математики.
Как можно выразить высказывание «ТТЧ непротиворечива» в самой ТТЧ? Опираясь на простой факт: противоречивость означает, что две формулы, x и ~x , одна из которых — отрицание другой, одновременно являются теоремами. Но если они обе — теоремы, тогда, согласно исчислению высказываний, все правильно сформированные формулы — теоремы. Таким образом, чтобы доказать непротиворечивость ТТЧ, достаточно доказать нетеоремность единственного высказывания ТТЧ. Следовательно, один возможный способ выразить непротиворечивость ТТЧ - это высказывание типа «формула ~0=0 не является теоремой ТТЧ». Такое высказывание уже было предложено в качестве упражнения несколькими страницами ранее. Вот что у нас должно получиться:
~Eа:ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,SSSSS…SSSSSO/a'}
. |_________|
. «S» 223666111666 раз
Путем длинных, но несложных рассуждений можно доказать, что пока ТТЧ остается непротиворечивой, ее клятва в собственной непротиворечивости — не теорема. Таким образом, ТТЧ весьма сильна в выражении идей, но слабовата в их доказательстве. Это очень интересный результат, если метафорически приложить его к проблеме человеческого самосознания.
От какой именно разновидности неполноты «страдает» ТТЧ? Мы вскоре увидим, что речь идет о неполноте типа «омега», определенной в главе VIII. Это означает, что существует некая бесконечная пирамидальная семья строчек, каждая из которых является теоремой — но при этом соответствующая «итоговая» строчка теоремой не является. Эту итоговую не-теорему найти нетрудно:
~Aа:~Eа':<���ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}
ΛARITHMOQUINE{SS… SSSO/a'',a'}>
. |_____|
. «S» d раз
Чтобы понять, почему эта строчка — не теорема ТТЧ, заметьте, что она крайне напоминает саму G — на самом деле, согласно правилу замены ТТЧ, от нее до G — лишь один шаг. Следовательно, если бы она была теоремой, то нам бы пришлось признать теоремность G. Теперь постараемся показать, что все строчки в пирамидальной семье на самом деле являются теоремами. Мы можем легко их записать:
~Eа':<���ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{O/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>
~Eа':<���ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>
~Eа':<���ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>
~Eа':<���ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>
* *
* *
* *
Что утверждает каждая из этих строчек? Вот их соответствующие переводы.
«0 и арифмоквайнификация d — не пара доказательства ТТЧ».
«1 и арифмоквайнификация d — не пара доказательства ТТЧ».
«2 и арифмоквайнификация d — не пара доказательства ТТЧ».
«3 и арифмоквайнификация d — не пара доказательства ТТЧ».
«4 и арифмоквайнификация d — не пара доказательства ТТЧ».
* *
* *
* *
Каждое из этих утверждений говорит о том, формируют ли два определенных числа пару доказательства, или нет. (С другой стороны, G говорит о том, является ли одно определенное число. числом-теоремой, или нет.) Поскольку G — не теорема, не существует такого числа, которое составляло бы пару доказательства с Гёделевым номером G. Таким образом, каждое из утверждений пирамидальной семьи истинно. Основная идея в том, что свойство являться парой доказательств примитивно рекурсивно и, следовательно, представимо — поэтому каждое из утверждений выше должно быть переводимо в теорему ТТЧ, что означает, что все утверждения в нашей бесконечной пирамидальной семье — теоремы. И это показывает, почему ТТЧ ω-неполна.
Поскольку интерпретация Gистинна, интерпретация ее отрицания ~Gложна. Из нашего предположения о непротиворечивости ТТЧ следует, что в ней не могут быть выведены ложные утверждения.
Таким образом, ни G, ни ее отрицание ~Gне являются теоремами ТТЧ. Мы нашли в нашей системе дыру — неразрешимое суждение. Это не должно нас особенно беспокоить, если мы достаточно свободомыслящи, чтобы признать, что из этого следует. Это означает, что ТТЧ можно дополнить, как можно дополнить абсолютную геометрию. В действительности, ТТЧ, как и абсолютную геометрию, можно расширить в двух направлениях. Она может быть расширена в стандартном направлении, что соответствует расширению абсолютной геометрии в Эвклидовом смысле; или же, она, может быть расширена в нестандартном направлении, что, разумеется, соответствует расширению абсолютной геометрии в неэвклидовом смысле. Стандартным дополнением будет:
Читать дальшеИнтервал:
Закладка: