Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Свойства, которые я имею в виду, можно пояснить на следующем примере. Представьте, что вы выкладываете несколько палочек:
/ // // // / /
и начинаете их считать. В то же время кто-то подсчитывает эти же палочки, начиная с другого конца. Читателю, вероятно, понятно, что результат получится одинаковый. Результат подсчета не зависит от того, как этот подсчет делается. Было бы бессмысленно пытаться доказать это предположение о свойствах сложения, настолько оно первично: либо вы его понимаете, либо нет — но в последнем случае вам не поможет никакое доказательство. Из этого предположения вытекают свойства коммутативности и ассоциативности сложения (первое заключается в том, что b + с = с + b во всех случаях; второе — в том, что b + (с + d) = (b + с) + d во всех случаях). То же предположение приводит нас к свойствам коммутативности и ассоциативности в умножении; достаточно представить множество кубиков, собранных вместе таким образом, что они составляют большое прямоугольное твердое тело. Коммутативность и ассоциативность умножения означают, что как бы вы ни поворачивали это тело, количество кубиков в нем не изменится. Эти предположения невозможно проверить во всех случаях, так как количество комбинаций бесконечно. Мы принимаем их как данное и верим в них (если мы вообще когда-нибудь о них задумываемся) так глубоко, как только можно во что-либо верить. Количество монет у нас в кармане не меняется оттого, что при ходьбе они перемещаются и бренчат; количество наших книг не изменится, если мы упакуем их в коробку, бросим коробку в багажник машины, отъедем на 100 километров, распакуем коробку и поставим книги на новую полку. Все это — часть того, что мы понимаем под словом число .
Встречаются люди, которые, столкнувшись с формулировкой какого-либо очевидного факта, находят удовольствие в том, что тут же пытаются доказать обратное. Я сам такой Фома Неверующий: записав свои примеры с палочками, деньгами и книгами, я сразу выдумал ситуации, в которых эти примеры перестают быть правильными. Вы, возможно, сделали то же самое. Все это я говорю к тому, чтобы показать, что числа как математическая абстракция весьма отличны от чисел, которые мы употребляем в повседневной жизни.
Все мы любим изобретать поговорки, которые, нарушая основные законы арифметики, иллюстрируют некие более глубокие «истины»: «1 да 1 равно 1» (любовники) или «1 плюс 1 плюс 1 равно 1» (святая Троица). Можно легко найти изъяны в подобных «формулах» — скажем, показав, что употребление знака «плюс» в них неверно. Так или иначе, подобных высказываний множество. По забрызганному дождем оконному стеклу сползают две капли; у самой рамы они сливаются в одну. Значит ли это, что 1 + 1 = 1? Из одного облака рождаются два; не доказательство ли это той же идеи? Отличить случаи, в которых мы можем говорить о сложении, от тех, где нам нужно какое-то другое понятие, не так-то просто. Размышляя об этом, мы, возможно, додумаемся до таких критериев, как разделение объектов в пространстве и их четкое отличие друг от друга. Но как подсчитать идеи? Или количество газов в атмосфере? Во многих источниках можно встретить высказывания типа: «В Индии 17 языков и 462 диалекта». В точных утверждениях такого рода есть нечто странное, так как сами понятия «язык» и «диалект» довольно расплывчаты.
В повседневном мире числа часто ведут себя плохо. Однако у людей имеется врожденное, пришедшее из древности чувство, что этого быть не должно. В абстрактном понятии числа, взятого вне связи с подсчетом бусинок, диалектов или облаков, есть нечто чистое и точное; должен существовать способ говорить о числах, не примешивая к ним глупую повседневность. Твердые правила, управляющие идеальными числами, являются основой арифметики, в то время как их следствия лежат в основе теории чисел. При переходе от чисел как объектов повседневной жизни к числам как объектам формальной системы возникает следующий важный вопрос: возможно ли заключить всю теорию чисел в рамки одной формальной системы? Действительно ли числа так чисты, ясны и регулярны, что их природа может быть полностью описана правилами какой-либо формальной системы? Картина «Освобождение», одно из самых прекрасных произведений Эшера, иллюстрирует этот удивительный контраст между формальным и неформальным и поразительную зону перехода между ними. Действительно ли числа свободны, как птицы? Страдают ли они, уловленные в тесную клетку формальной системы? Существует ли магическая зона перехода между числами, используемыми в повседневной жизни, и числами, написанными на бумаге?
Говоря о свойствах натуральных чисел, я имею в виду не только такие свойства, как, скажем, сумма определенной пары чисел. Ее легко можно подсчитать; никто из нас, выросших в двадцатом веке, не сомневается в возможности механизации таких процессов, как подсчет, сложение, умножение, и т. д. Я имею в виду такие свойства чисел, исследованием которых занимаются математики и для познания которых не достаточно, даже теоретически, никакого подсчета. Рассмотрим классический пример: утверждение «существует бесконечно много простых чисел». Прежде всего, не существует такого метода подсчета, который мог бы доказать или опровергнуть это утверждение. Лучшее, что мы можем сделать, — это затратить некоторое время на подсчет простых чисел и заключить, что их действительно имеется «целая куча». Однако никакой подсчет не скажет нам того, конечно или бесконечно количество простых чисел; любой подсчет всегда останется неполным. Это утверждение, называющееся «Теорема Эвклида» (обратите внимание на заглавную «Т»), совсем не очевидно. Однако со времен Эвклида все математики считают его истинным. В чем же дело?

Рис. 13. М. К. Эшер «Освобождение» (литография, 1955)
Дело в том, что этот факт следует из неких рассуждений. Давайте проследим за этими рассуждениями . Рассмотрим вариант доказательства Эвклида, показывающий, что какое бы число мы ни взяли, всегда найдется большее простое число. Возьмем число N. Перемножим все положительные целые числа, начиная с 1 и кончая N; иными словами, найдем факториал N (он пишется «N!») Полученный результат делится на все числа, меньшие чем N. Если прибавить 1 к N!, то результат
не будет делиться на 2 (так как при делении на 2 получится 1 в остатке);
не будет делиться на 3 (так как при делении на 3 получится 1 в остатке);
не будет делиться на 4 (так как при делении на 4 получится 1 в остатке);
.
.
Читать дальшеИнтервал:
Закладка: