Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
.
не будет делиться на N (так как при делении на N получится 1 в остатке);
Другими словами, если N!+1 и делимо на какое-то число, кроме самого себя и единицы, оно делимо только на числа, большие, чем N. Следовательно, либо N!+1 само простое число, либо его простые делители больше N. В любом случае, мы показали, что должно существовать простое число, большее N, и что, следовательно, количество простых чисел бесконечно.
Кстати, этот последний шаг называется обобщением ; мы еще встретимся с этим понятием в более сложном контексте. Оно заключается в том, что, начав наши рассуждения с какого-либо числа N, мы указываем, что N может быть любым числом — следовательно, наше доказательство носит общий характер.
Эвклидово доказательство типично для так называемой «реальной математики». Оно просто, точно и изящно и иллюстрирует тот факт, что несколько коротких шагов могут увести нас весьма далеко от начального пункта. В нашем случае, таким начальным пунктом являлись основные идеи о свойствах умножения, деления, и так далее. Короткие шаги — это этапы рассуждения. Хотя каждый отдельный шаг кажется очевидным, конечный результат таковым не является. Нам никогда не удастся проверить, верно ли это утверждение Эвклида; однако мы верим в его истинность, поскольку мы верим в логические рассуждения. Если вы принимаете эти рассуждения, вам не остается выхода; раз вы согласились выслушать Эвклида, вам придется согласиться с его выводом. Этот отрадный факт означает, что математики всегда могут придти к согласию по поводу того, какие утверждения считать «истинными», а какие — «ложными».
Это доказательство — пример упорядоченного процесса мысли. Каждое утверждение соотносится с предыдущим неоспоримым образом; именно поэтому мы говорим скорее о «доказательстве», чем об «очевидном свидетельстве». Целью математики всегда являлось нахождение строгого доказательства какого-либо неочевидного утверждения. Сам факт строгого соотношения шагов доказательства указывает на то, что должна существовать определенная схема, связывающая эти утверждения в одно логическое целое. Об этой схеме лучше всего рассуждать при помощи специального нового лексикона, состоящего из символов, годных только для описания утверждений о числах. Таким образом, мы сможем рассмотреть версию доказательства в «переводе». Это будет набор утверждений, строго соотносящихся между собой; причем эти отношения всегда можно описать. Утверждения, поскольку они записаны компактными, стилизованными символами, выглядят как определенные структуры . Другими словами, при прочтении вслух мы видим, что эти утверждения говорят о числах и их свойствах; записанные же на бумаге, они выглядят как абстрактные структуры. Таким образом, последовательно, строка за строкой прочитанная схема доказательства начинает казаться постепенной трансформацией структур по определенным типографским правилам.
Хотя Эвклид доказывает, что каждое число обладает определенным свойством, он, тем не менее, не рассматривает в отдельности каждый из бесконечно многих случаев. Для этого он использует выражения типа «каким бы числом N ни было», или «неважно, какое N мы возьмем». Мы могли бы перефразировать доказательство, используя фразу «все N». Умело обращаясь с подобными выражениями, мы всегда можем избежать возни с бесконечным количеством утверждений. Вместо этого мы будем иметь дело лишь с двумя-тремя понятиями, например, такими, как слово «все». Сами по себе конечные, они воплощают в себе бесконечность и поэтому позволяют нам обойти такое препятствие, как необходимость доказывать бесконечное количество фактов.
Мы используем слово «все» по-разному, что определено нашим мыслительным процессом: существуют правила, которым подчиняется наш выбор. Возможно, что мы не сознаем этого и утверждаем, что руководствуемся значением слова; однако это лишь иносказание, выражающее все ту же идею; наше мышление подчиняется определенным негласным законам. Всю жизнь мы используем слова как часть определенных структур; но, вместо того, чтобы называть эти структуры «правилами», мы приписываем их возникновение и развитие «значениям» слов. Это открытие было решающим шагом на пути формализации теории чисел.
Рассмотрев доказательство Эвклида более внимательно, мы увидели бы, что оно складывается из многих крохотных, почти бесконечно малых шагов. Если бы мы записали их одно за другим, доказательство показалось бы невероятно сложным. Оно кажется нам легче, когда несколько шагов складываются на манер телескопа и составляют одно-единственное предложение. Если бы мы рассмотрели это доказательство, как в замедленной съемке, перед нами предстали бы отдельные «секции». Другими словами, деление может идти лишь до определенного предела, за которым мы сталкиваемся с «атомной» природой мыслительных процессов. Доказательство может быть разбито на серию крохотных, но отдельных этапов; рассмотренные «издалека», они сливаются в непрерывный поток. В главе VIII я приведу пример такой «атомизации» доказательства, и вы увидите, какое множество шагов в нем участвует. Возможно, что это вас не удивит. В мозгу у Эвклида, когда он изобретал свое доказательство, работали миллионы нейронов, многие из которых давали сотни импульсов в секунду. Чтобы произнести одно-единственное предложение, в мозгу задействованы сотни тысяч нейронов. Если мысли Эвклида были настолько сложны, логично ожидать, что его доказательство также состоит из огромного количества шагов! (Хотя, скорее всего, прямой связи между нейронной активностью мозга и доказательством в нашей формальной системе не существует, они, тем не менее, сравнимы по своей сложности — словно природа желает сохранить сложность доказательства бесконечного множества простых чисел, несмотря на то, что это доказательство представлено в таких различных системах.)
В последующих главах мы разработаем такую формальную систему, которая (1) включает стилизованный лексикон, способный выразить все высказывания о натуральных числах и (2) имеет правила, соответствующие всем необходимым типам рассуждений. При этом возникает вопрос, сравнима ли мощность подобных формальных правил (по крайней мере, в сфере теории чисел) с мощностью тех правил, которыми мы регулярно пользуемся в наших мыслительных процессах. Иными словами, существует ли теоретическая возможность, используя формальную систему, достичь уровня наших мыслительных способностей?
Соната для Ахилла соло
Звонит телефон — Ахилл берет трубку.
Ахилл : Алло, Ахилл слушает.
Ахилл : А, здравствуйте, г-жа Черепаха. Как дела?
Читать дальшеИнтервал:
Закладка: