Иосиф Розенталь - Геометрия, динамика, вселенная
- Название:Геометрия, динамика, вселенная
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Розенталь - Геометрия, динамика, вселенная краткое содержание
Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.
Геометрия, динамика, вселенная - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
i i пробегает значения i=1,2,3,4; e,a — постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:
A|' — > A| + DLf/DLx|, (45) i i i
где f — некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:
i ∂(ef) i eA| dx| + —--- dx| = eA|dx| + d(ef), (46)
i DLx| i i
i
где d(ef) — полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате
i вектора A|A| приводит к изменению лагранжиана, и,
i i следовательно, член A|A| нарушает калибровочную
i инвариантность уравнений движения. Следовательно, лагранжиан
i не может содержать скаляры типа A|A|. В теории поля
i демонстрируется, что эти члены могут появиться в том случае, когда частицы — переносчики взаимодействия — характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m||||| < 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы — электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m|||||=0. GAMMA
С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc. Для электродинамики это означает, что электромагнитные силы — дальнодействующие. Их радиус r|≈HP/m|||||c при m||||| = 0 равен бесконечности. Этот факт
GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).
Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.
В квантовой механике состояние представляется волновой функцией Ψ. Вообще говоря, функция Ψ — комплексное число; среднее значение какой-либо динамической величины A равно интегралу
--\
\ * = \ Ψ| (x) A Ψ (x) dx, (47)
\
\
\-
x — точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования
i ALPHA PSIG'(x) — > e||||||| Ψ (x). (48)
Инвариантность величины - следствие тождества i ALPHA — i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная.
* * функция Ψ| (x) преобразуется по закону Ψ| (x) — > — i ALPHA * e|||||||| Ψ| (x). Следовательно, состояние системы,
* которое определяется произведениями Ψ| A Ψ, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.
В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ≠ const (x), а функция Ψ преобразовывалась по закону
i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ (x). (49)
Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.
Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная
∂ Ψ i ALPHA(x) ∂ Ψ(x) —--- — > e|||||||||| [------ + ∂ x ∂ x
∂ ALPHA (x) + Ψ (x) —------] (50)
∂ x
и, следовательно, неинвариантна относительно локальных калибровочных преобразований.
Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов
A|'(x) — > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю
с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).
С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.
Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.
Сделаем в заключение три важных замечания.
1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.
2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.
3. Таким образом, можно установить эквивалентность следующих утверждений:
уравнения движения (поля) — калибровочно инвариантны,
заряд в замкнутой системе сохраняется,
силы в статическом случае дальнодействующие,
масса частицы переносчика взаимодействия m|||||=0.
GAMMA
Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности. [11] Наиболее просто взаимосвязь условия m||||| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984.
Интервал:
Закладка: