Иосиф Розенталь - Геометрия, динамика, вселенная

Тут можно читать онлайн Иосиф Розенталь - Геометрия, динамика, вселенная - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Геометрия, динамика, вселенная
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.11/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Иосиф Розенталь - Геометрия, динамика, вселенная краткое содержание

Геометрия, динамика, вселенная - описание и краткое содержание, автор Иосиф Розенталь, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная - читать онлайн бесплатно полную версию (весь текст целиком)

Геометрия, динамика, вселенная - читать книгу онлайн бесплатно, автор Иосиф Розенталь
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернемся теперь к соотношению инвариантности функции Ψ в электродинамике и будем геометрически

i ALPHA(x) интерпретировать фазовый множитель e||||||||||. Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение.

Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e||||||| соответствует точке в плоскости комплексного переменного:

i ALPHA e||||||| = cos ALPHA + i sin ALPHA (52)

Таким образом, cos ALPHA есть значение действительной,

i ALPHA а sin ALPHA — мнимой части комплексного числа e|||||||.

i ALPHA Модуль комплексного числа! e|||||||! = 1. С геометрических позиций эта интерпретация эквивалентна

i ALPHA утверждению, что функция e||||||| есть точка в двумерной декартовой плоскости с абсциссой, равной cos ALPHA, и ординатой sin ALPHA. Эта точка лежит на окружности с радиусом, равным единице. Учтем далее, что ALPHA принимает произвольное действительное значение. следовательно, число i ALPHA e||||||| при любом значении ALPHA образует окружность с единичным радиусом. Инвариантность относительно преобразования (49) означает, что вектор состояния Ψ может находиться на такой окружности, которая обозначается

1 символом S| (сфера размерности единица). Поэтому естественно

1 допустить, что окружность (сфера S|) и является слоем над базой — привычным пространством Минковского. Напомним, что в данном случае рассматриваются только электромагнитные силы, поэтому следует отождествлять базовое пространство с пространством Минковского. При совместном действии электромагнитных и гравитационных сил следовало бы базой полагать пространство Римана.

Нетрудно определить и связность расслоенного пространства, соответствующего данному статическому случаю. Как обычно, начало координат отождествим с заряженным телом отсчета. Пусть расстояние до данной точки в пространстве Минковского (Евклида) равно R. Тогда следует слой (плоскость окружности) расположить перпендикулярно вектору R, проходящему через центр окружности. Характеристикой расслоенного пространства, связывающего взаиморасположение соседних слоев и физическую ситуацию, является плотность центров окружностей (слоев) на окружности в базе с радиусом R. Следует положить, что эта плотность равна потенциалу!e!/R, где e — заряд тела отсчета.

Естественно, что, вводя слои-окружности, мы увеличиваем на единицу размерность пространства. Нужно четко представить (вообразить), что слой — это не геометрическое место точек в базе, а автономная геометрическая конструкция над базой.

Наше мышление устроено таким образом, что реально представить это дополнительное, пятое измерение мы не в состоянии. Поэтому некоторое упрощенное представление о дополнительном измерении может дать двумерная плоскость (база), к каждой точке которой «прикреплена» окружность с центром в этой точке. Плотность слоев убывает с увеличением расстояния от начала координат — тела отсчета с зарядом e.

Хотя наши рассуждения относились к простейшему статическому случаю, однако геометрическая интерпретация электромагнитного взаимодействия на основе расслоенного

1 пространства со слоем S| сохраняется и в общем, нестатическом случае с единственным различием: связность такого расслоенного пространства определяется не только скалярной функцией FI, но и 4-векторным потенциалом A|, в

ю котором функция FI является лишь временной компонентой. Трактовка потенциалов как связностей оправдывается и тем, что связности определены неоднозначно. Например, связность, представленная на рис. 3, определена с точностью до трансляционной инвариантности в слое.

Здесь полезно сделать одно отступление. Хотя мы исходили из концепции расслоенного пространства, однако исторически геометрическая интерпретация электромагнетизма, основанная на введении пятого дополнительного измерения, была введена Т.Калуцей в 1921 г. задолго до формирования идей расслоенного пространства.

В ту далекую эпоху вследствие торжества общей теории относительности (количественное согласие предсказаний ОТО с наблюдениями отклонения света в гравитационном поле Солнца) возникла идея объединения известных тогда взаимодействий (гравитационного и электромагнитного) на геометрической базе. С этой целью предпринимались попытки модифицировать физическую геометрию, обобщая 4-мерную геометрию Римана.

В частности, Калуца пытался объединить взаимодействия, введя пятое измерение в рамках многомерной римановской геометрии, т. е. обобщая метрику Римана. В этой теории простейшая метрика объединенного взаимодействия имела вид:

! g|| + A|A| A|!

! юv ю v ю! g|| =!! (53) AB! A| 1!

! v!.

Индексы ю, v пробегают значения 1,2,3,4. Компоненты метрического тензора g|| представляют риманово пространство

юv ОТО. Индексы A,B могут иметь значения от 1 до 5. A|

ю 4-вектор — потенциал электромагнитного поля.

Можно показать, что метрика (53) соответствует

4 1 расслоенному пространству — произведению R| x S| — и представляет совместное действие гравитационного и электромагнитного полей. [13] Вывод уравнений электродинамики из метрики (53) см. в ст.: Ходос А. Теории Калуцы-Клейна: общий обзор // УФН. 1985. Т.146, #4, С.647.

Несмотря на красоту идей Калуцы, к концу 30-х годов интерес к пятимерным теориям был практически утрачен. Физиков (в том числе и Эйнштейна), занимающихся объединением взаимодействий на базе многомерного пространства, посчитали чудаками, а само это направление бесперспективным. Для подобной пессимистической оценки было немало оснований. Перечислим их в том порядке, который (по мнению автора) отражает их важность.

1. К тому времени четко определилось воззрение, что электромагнитное и гравитационное взаимодействия не исчерпывают все силы в природе. Появились доказательства существования сильного и слабого взаимодействий, кардинально отличных от первых двух. Для вновь открытых взаимодействий не было места в оригинальной схеме Калуцы или в схемах его современников.

2. В схеме не было оснований для выбора размеров окружности слоя. Было лишь ясно, что эти размеры очень малы (<<10**-13 см, т. е. много меньше радиуса действия ядерных сил), однако никакие столь малые характеристические размеры не имели теоретических основ.

3. Схема Калуцы не приводила ни к каким новым предсказаниям или интерпретациям фундаментальных фактов.

4. Физическое пространство в рамках этой теории имело довольно странный вид: три пространственных координаты имели огромную протяженность (~10**26 см — размеры Метагалактики), четвертая же координата имела циклический замкнутый характер с очень малыми размерами.

Все эти соображения привели к тому, что многомерными теориями занимались очень немногие физики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иосиф Розенталь читать все книги автора по порядку

Иосиф Розенталь - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Геометрия, динамика, вселенная отзывы


Отзывы читателей о книге Геометрия, динамика, вселенная, автор: Иосиф Розенталь. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x