Иосиф Розенталь - Геометрия, динамика, вселенная
- Название:Геометрия, динамика, вселенная
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Розенталь - Геометрия, динамика, вселенная краткое содержание
Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.
Геометрия, динамика, вселенная - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вернемся теперь к соотношению инвариантности функции Ψ в электродинамике и будем геометрически
i ALPHA(x) интерпретировать фазовый множитель e||||||||||. Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение.
Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e||||||| соответствует точке в плоскости комплексного переменного:
i ALPHA e||||||| = cos ALPHA + i sin ALPHA (52)
Таким образом, cos ALPHA есть значение действительной,
i ALPHA а sin ALPHA — мнимой части комплексного числа e|||||||.
i ALPHA Модуль комплексного числа! e|||||||! = 1. С геометрических позиций эта интерпретация эквивалентна
i ALPHA утверждению, что функция e||||||| есть точка в двумерной декартовой плоскости с абсциссой, равной cos ALPHA, и ординатой sin ALPHA. Эта точка лежит на окружности с радиусом, равным единице. Учтем далее, что ALPHA принимает произвольное действительное значение. следовательно, число i ALPHA e||||||| при любом значении ALPHA образует окружность с единичным радиусом. Инвариантность относительно преобразования (49) означает, что вектор состояния Ψ может находиться на такой окружности, которая обозначается
1 символом S| (сфера размерности единица). Поэтому естественно
1 допустить, что окружность (сфера S|) и является слоем над базой — привычным пространством Минковского. Напомним, что в данном случае рассматриваются только электромагнитные силы, поэтому следует отождествлять базовое пространство с пространством Минковского. При совместном действии электромагнитных и гравитационных сил следовало бы базой полагать пространство Римана.
Нетрудно определить и связность расслоенного пространства, соответствующего данному статическому случаю. Как обычно, начало координат отождествим с заряженным телом отсчета. Пусть расстояние до данной точки в пространстве Минковского (Евклида) равно R. Тогда следует слой (плоскость окружности) расположить перпендикулярно вектору R, проходящему через центр окружности. Характеристикой расслоенного пространства, связывающего взаиморасположение соседних слоев и физическую ситуацию, является плотность центров окружностей (слоев) на окружности в базе с радиусом R. Следует положить, что эта плотность равна потенциалу!e!/R, где e — заряд тела отсчета.
Естественно, что, вводя слои-окружности, мы увеличиваем на единицу размерность пространства. Нужно четко представить (вообразить), что слой — это не геометрическое место точек в базе, а автономная геометрическая конструкция над базой.
Наше мышление устроено таким образом, что реально представить это дополнительное, пятое измерение мы не в состоянии. Поэтому некоторое упрощенное представление о дополнительном измерении может дать двумерная плоскость (база), к каждой точке которой «прикреплена» окружность с центром в этой точке. Плотность слоев убывает с увеличением расстояния от начала координат — тела отсчета с зарядом e.
Хотя наши рассуждения относились к простейшему статическому случаю, однако геометрическая интерпретация электромагнитного взаимодействия на основе расслоенного
1 пространства со слоем S| сохраняется и в общем, нестатическом случае с единственным различием: связность такого расслоенного пространства определяется не только скалярной функцией FI, но и 4-векторным потенциалом A|, в
ю котором функция FI является лишь временной компонентой. Трактовка потенциалов как связностей оправдывается и тем, что связности определены неоднозначно. Например, связность, представленная на рис. 3, определена с точностью до трансляционной инвариантности в слое.
Здесь полезно сделать одно отступление. Хотя мы исходили из концепции расслоенного пространства, однако исторически геометрическая интерпретация электромагнетизма, основанная на введении пятого дополнительного измерения, была введена Т.Калуцей в 1921 г. задолго до формирования идей расслоенного пространства.
В ту далекую эпоху вследствие торжества общей теории относительности (количественное согласие предсказаний ОТО с наблюдениями отклонения света в гравитационном поле Солнца) возникла идея объединения известных тогда взаимодействий (гравитационного и электромагнитного) на геометрической базе. С этой целью предпринимались попытки модифицировать физическую геометрию, обобщая 4-мерную геометрию Римана.
В частности, Калуца пытался объединить взаимодействия, введя пятое измерение в рамках многомерной римановской геометрии, т. е. обобщая метрику Римана. В этой теории простейшая метрика объединенного взаимодействия имела вид:
! g|| + A|A| A|!
! юv ю v ю! g|| =!! (53) AB! A| 1!
! v!.
Индексы ю, v пробегают значения 1,2,3,4. Компоненты метрического тензора g|| представляют риманово пространство
юv ОТО. Индексы A,B могут иметь значения от 1 до 5. A|
ю 4-вектор — потенциал электромагнитного поля.
Можно показать, что метрика (53) соответствует
4 1 расслоенному пространству — произведению R| x S| — и представляет совместное действие гравитационного и электромагнитного полей. [13] Вывод уравнений электродинамики из метрики (53) см. в ст.: Ходос А. Теории Калуцы-Клейна: общий обзор // УФН. 1985. Т.146, #4, С.647.
Несмотря на красоту идей Калуцы, к концу 30-х годов интерес к пятимерным теориям был практически утрачен. Физиков (в том числе и Эйнштейна), занимающихся объединением взаимодействий на базе многомерного пространства, посчитали чудаками, а само это направление бесперспективным. Для подобной пессимистической оценки было немало оснований. Перечислим их в том порядке, который (по мнению автора) отражает их важность.
1. К тому времени четко определилось воззрение, что электромагнитное и гравитационное взаимодействия не исчерпывают все силы в природе. Появились доказательства существования сильного и слабого взаимодействий, кардинально отличных от первых двух. Для вновь открытых взаимодействий не было места в оригинальной схеме Калуцы или в схемах его современников.
2. В схеме не было оснований для выбора размеров окружности слоя. Было лишь ясно, что эти размеры очень малы (<<10**-13 см, т. е. много меньше радиуса действия ядерных сил), однако никакие столь малые характеристические размеры не имели теоретических основ.
3. Схема Калуцы не приводила ни к каким новым предсказаниям или интерпретациям фундаментальных фактов.
4. Физическое пространство в рамках этой теории имело довольно странный вид: три пространственных координаты имели огромную протяженность (~10**26 см — размеры Метагалактики), четвертая же координата имела циклический замкнутый характер с очень малыми размерами.
Все эти соображения привели к тому, что многомерными теориями занимались очень немногие физики.
Читать дальшеИнтервал:
Закладка: