Питер Эткинз - Десять великих идей науки. Как устроен наш мир.
- Название:Десять великих идей науки. Как устроен наш мир.
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
Десять великих идей науки. Как устроен наш мир. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Давайте на минуту остановимся на двумерном искривленном пространстве (а не на пространстве-времени). Чтобы представить себе его искривленным, вообразим 2-пространство, поверхность, вложенную в 3-пространство, объем. Представим себе 2-пространство как поверхность 3-сферы (обычной сферы, похожей на идеализированную Землю). Теперь представим себе сцену, в которой я стою на экваторе на нулевом меридиане (это помещает меня в неуютную влажность океана где-то к западу от побережья Африки), а вы стоите на экваторе на долготе 90° (это помещает вас на побережье Эквадора). Свисток, и мы оба начинаем двигаться к северу, проверяя на каждом шагу на протяжении всего пути, что мы не отклонились ни вправо, ни влево. Будучи физиками-теоретиками, мы не обращаем внимания на неудобства при пересечении пустынь, океанов и ледовых шапок. В конечном счете, когда мы достигаем Северного полюса, мы сталкиваемся носами (рис. 9.13). Нам приходится заключить, что параллельные с виду линии пересекаются в пространстве с этой геометрией. О пространстве, в котором все параллельные с виду линии встречаются, если их продолжить достаточно далеко, — или, что эквивалентно, о пространстве, в котором нет по-настоящему параллельных линий — говорят, что оно имеет положительную кривизну . Это пространство дает пример одной из неевклидовых геометрий, о которых я упоминал раньше.

Рис. 9.13.Вы стартуете на экваторе и упорно шагаете вверх по гринвичскому меридиану (0° долготы), все время лицом вперед. Я делаю то же самое, но начинаю из точки экватора при 90° западной долготы. Когда мы достигаем полюса, наши носы сталкиваются. Поэтому эти два меридиана не параллельны: в такой геометрии нет параллельных линий. Данная иллюстрация также показывает, как представить себе двумерную поверхность однородной положительной кривизны в виде поверхности трехмерной сферы. Мы говорим, что двумерная поверхность «вложена» в двумерное пространство.
Немедленным следствием существования неевклидовых геометрий является вывод, что геометрия есть наука экспериментальная, а не нечто (как думал Иммануил Кант, о чем мы узнаем в главе 10), справедливость чего можно установить одной лишь интроспекцией. Одна лишь интроспекция никогда не приводит к истине, что так чудесно проиллюстрировал Аристотель; интроспекция в союзе с экспериментом, конечно — темой нашей книги, — является необычайно чудесным и надежным гидом, что так великолепно проиллюстрировал Галилей. Мы стоим перед выбором перспективы для геометрии пространства: быть ли ей евклидовой, как, сидя в своих креслах, целых 2000 лет полагали Евклид и его последователи, или неевклидовой. Чтобы решить этот вопрос, мы должны обратиться к эксперименту и увидеть, например, столкнемся ли мы носами, если будем идти по параллельным путям достаточно далеко. Карл Фридрих Гаусс (1777-1855), один из величайших математиков, имел некоторое представление о том, что у евклидовой геометрии могут быть конкуренты:
На самом деле, поэтому я время от времени в шутку выражаю пожелание, чтобы геометрия Евклида была неверна.
Однажды этот концептуальный тупик был пробит в наибольшей мере немецким математиком с трагически короткой жизнью, Бернхардом Риманом (1826-1866). В своей выдающейся лекции, прочитанной в 1854 г. по случаю вступления в должность, он дал человеческому уму свободу, достаточную для того, чтобы вообразить себе неевклидовы пространства уже и с отрицательной кривизной. Рисунок 9.14 показывает двумерную поверхность отрицательной кривизны, вложенную в трехмерное пространство. Когда вы сидите в седле, вас поддерживает двумерная поверхность отрицательной кривизны. В этом пространстве через заданную точку можно провести бесконечное число линий, параллельных данной.

Рис. 9.14.Двумерная поверхность с отрицательной кривизной седлообразной формы, вложенная в трехмерное пространство.
Коль скоро мы преодолели интеллектуальный бугор и признали то обстоятельство, что существуют разные типы неевклидовых геометрий, мы способны перейти к представлению о пространстве, геометрия которого может меняться от места к месту. То есть различные области — пространства могут иметь разную кривизну. Например, мы можем представить себе пространство, похожее на гантель, полученное сжатием сферы в области экватора, превращающем его в талию гантели. Это пространство будет иметь положительную кривизну около полюсов и отрицательную кривизну в седлообразной окрестности экватора. Мы могли бы пойти дальше и вообразить более сложные пространства, втыкая пальцы в эту поверхность и создавая небольшие кратеры, испещряющие ее так, чтобы кривизна менялась от места к месту. Вам может понравиться рассматривать повседневные объекты, которые имеют поверхности с кривизной, меняющейся от места к месту (например, вы сами).
Когда мы думаем о пространствах, вложенных в пространства более высокой размерности, мы встаем на точку зрения надменного сверхсущества, которое может судить на глазок, имеется ли тут кривизна. Предположим, однако, что мы муравьи, и наше воображение ограничено реальным пространством, в котором мы обитаем: может ли муравей узнать, искривлена ли Земля, можем ли мы определить, искривлено ли наше пространство-время? Ответ уже следует из текущего обсуждения, поскольку путешествия, которые вы и я предприняли, и вопрос о том, столкнемся ли мы с вами нос к носу или нет, можно представить себе имеющими место на поверхности, независимо от того, считаем мы ее во что-то вложенной или нет. Таким образом, если вы и я отправляемся по двум параллельным с виду путям и сталкиваемся носами, то мы знаем, что пространство, в котором мы пребываем, имеет положительную кривизну. Это заключение не зависит от того, можем ли мы вообразить наше пространство вложенным в пространство более высокой размерности или нет.
Мы можем развить эту мысль дальше и научиться измерять кривизну пространства количественно. Пойдемте со мной на Северный полюс (рис. 9.15). Теперь, когда мы здесь, давайте вытянем, каждый, по одной руке, указывая ею вниз прямо на юг, на Гринвич, вдоль меридиана 0°. Свисток, и вы отправляетесь на юг и идете, пока не достигнете экватора. Продолжая указывать рукой на юг, вы идете вдоль экватора, пока не достигнете 90° восточной долготы. Из этой точки, все еще показывая рукой на юг, вы возвращаетесь на Северный полюс. Я, в свою очередь, наблюдаю, как вы появляетесь из-за горизонта. Однако, к нашему общему огромному удивлению, мы обнаруживаем, что ваша рука повернута на 90° относительно моей, несмотря на то, что вы педантично указывали ею строго на юг на протяжении всего вашего путешествия! В плоском пространстве направления, наших рук совпадали бы, поэтому мы заключаем, что реальная поверхность Земли плоской не является. Более того, мы можем описать количественную меру «кривизны» как изменение угла, на который повернута ваша рука, деленное на площадь области, ограниченной вашим маршрутом, что дает 1 / радиус 2 , где радиус является радиусом Земли. Так как радиус Земли равен 6400 км, кривизна ее поверхности составляет 2,4×10 −8 км −2. Это очень маленькая кривизна, указывающая на то, что нам придется делать обход очень большой площади, для того чтобы эффект стал заметным. Вот почему землемеры Хаммурапи не замечали ее: поля, которые они измеряли в Месопотамии, имели площади лишь в несколько тысяч квадратных метров, и кривизна Земли просто не могла быть видна. Кривизна футбольного мяча с радиусом 10 см равна 0,01 м −2, так что эта кривизна становится заметной на областях его поверхности, занимающих довольно небольшую площадь. Для сферы кривизна будет оставаться одинаковой, где бы мы ни начали наше путешествие и какую бы площадь мы ни обошли. Кроме того, кривизна на ней всюду положительна. Куриное яйцо также всюду имеет положительную кривизну, но ее значения меняются примерно от 0,2 см −2на тупом конце до 0,4 см −2на более круто искривленном остром конце.
Читать дальшеИнтервал:
Закладка: