Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Строго говоря, того, что принято называть математическим доказательством, не существует… В конечном счете мы можем лишь указывать… Любое доказательство представляет собой то, что мы с Литтлвудом называем газом, — риторические завитушки, предназначенные для психологического воздействия, картинки, рисуемые на доске во время лекции, средство для стимуляции воображения учащихся.

Харди считал доказательства скорее фасадом, чем несущими опорами здания математики.

В 1944 г. выдающийся американский математик Рэймонд Луис Уайлдер выступил с вполне обоснованной статьей [98]*, в которой низвел доказательство на еще более низкую ступень. Доказательство, утверждал Уайлдер, есть не что иное, как

проверка продуктов нашей интуиции… Совершенно ясно, что мы не обладали и, по-видимому, никогда не будем обладать критерием доказательства, не зависящим ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий, будь то отдельное лицо или школа мышления, в этих условиях самое разумное, пожалуй, призвать, что, как правило, в математике не существует абсолютно истинного доказательства, хотя широкая публика убеждена в обратном.

Ценность доказательства, как такового, подверг критике Уайтхед в своей лекции под названием «Бессмертие»:

Резюмируя, можно сказать, что логика, понимаемая как адекватный анализ процесса человеческого мышления, есть не более чем — обман. Логика — превосходный инструмент, но ей необходим в качестве основы здравый смысл… По моему убеждению, окончательный вид, принимаемый философской мыслью, не может опираться на точные утверждения, составляющие основу специальных наук. Точность иллюзорна.

Доказательство, абсолютная строгость и тому подобные понятия — блуждающие огоньки, химеры, «не имеющие пристанища в математическом мире». Строгого определения строгости не существует. Доказательство считается приемлемым, если оно получает одобрение ведущих специалистов своего времени или строится на принципах, которые модно использовать в данный момент. {166}Никакого общепризнанного критерия строгости в современной математике не существует. Математическая строгость переживает сейчас не лучшее время. То, что некогда считалось неотъемлемой особенностью математики — неоспоримый вывод из явно сформулированных аксиом, — навсегда отошло в прошлое. Неопределенность и способность впадать в ошибку присущи логике в той мере, в какой они ограничивают возможности человеческого разума. Приходится лишь удивляться, сколько фундаментальных допущений мы обычно принимаем в математике, даже не сознавая этого.

Философ Ницше как-то раз назвал шутки «эпитафиями эмоциям». Чтобы хоть как-то скрыть охватившее их уныние, математики принялись подшучивать над логикой своей науки: «Достоинство логического доказательства состоит не в том, что оно вселяет веру, а в том, что оно заставляет сомневаться относительно того, какое место в рассуждениях должно вызывать у нас особенно сильные сомнения… К математическому доказательству относись не только с почтением, но и с подозрением!.. Мы не можем более надеяться, что нам удастся быть логичными. Будем же по крайней мере надеяться, что нам удастся не быть нелогичными… Больше страстности — меньше ясности». Математик Анри Леон Лебег, стоявший на позициях интуиционизма, заявил в 1928 г.: «Логика может заставить нас отвергнуть некоторые доказательства, но она не в силах заставить нас поверить ни в одно доказательство». В статье 1941 г. Лебег добавил, что логика служит не для того, чтобы убеждать, создавать уверенность. Мы верим в то, что согласуется с нашей интуицией. Лебег утверждал, что, по мере того как мы становимся все более сведущими в математике, наша интуиция становится все более изощренной.

Даже Бертран Рассел с его сугубо логистической программой не мог удержаться от язвительных замечаний в адрес логики. В «Принципах математики» (1903) Рассел писал: «Одно из главных достоинств присущих доказательствам, состоит в том, что они пробуждают определенный скептицизм по отношению к доказанному результату». В том же издании «Принципов» он утверждал, что, как явствует из самой попытки положить в основу математики систему неопределяемых понятий и исходных утверждений, любой результат вполне может быть опровергнут (для этого достаточно, чтобы кому-нибудь удалось обнаружить противоречие в нашей формально-логической системе), но никогда не может быть доказан. Все в конечном счете зависит от непосредственного восприятия. Чуть позже (1906) Рассел, встревоженный обнаруженными тогда парадоксами, высказался более откровенно, чем имел обыкновение высказываться в последующие годы. Когда антиномии показали, что логическое доказательство на существовавшем тогда уровне строгости небезупречно, Рассел заявил: «Элемент неопределенности должен оставаться всегда, подобно тому как он неизбежно остается в астрономии. Со временем он может существенно уменьшиться, но смертным свойственно ошибаться».

Говоря о насмешках, которым подвергалась логика, нельзя не вспомнить слова одного из видных современных философов и специалистов по основаниям математики австрийца Карла Поппера (р. 1902) {167}:

Существуют три уровня понимания доказательства. На самом низком уровне у вас появляется приятное ощущение, что вы поняли ход рассуждений. Средний уровень достигается, когда вы можете воспроизвести доказательство. На верхнем, или высшем, уровне вы обретаете способность опровергнуть доказательство.

Оливер Хевисайд, весьма пренебрежительно относившийся к постоянным заботам математиков о строгости, иронически заявил: «Логика непобедима, потому что одолеть ее можно только с помощью логики».

Феликс Клейн, бывший на протяжении первой четверти XX в. признанным главой мирового центра математики — математического института Гёттингенского университета, — не занимался специально проблемами оснований математики, однако из истории развития этой науки он извлек кое-какие выводы. В своей книге «Элементарная математика с точки зрения высшей» {168}(1908) Клейн так описывал развитие математики:

Математика развивалась подобно дереву, которое разрастается не путем тончайших разветвлений, идущих от корней, а разбрасывает свои ветки и листья вширь, распространяя их зачастую вниз, к корням. В основных исследованиях в области математики не может быть окончательного завершения, а вместе с тем и окончательно установленного первого начала…

[117]

Аналогичное мнение, хотя и несколько по иному поводу, выразил Пуанкаре: не существует решенных проблем, существуют только проблемы более или менее решенные.

Математики поклонялись золотому тельцу — строгому, одинаково приемлемому для всех доказательству, истинному во всех возможных мирах, искренне веря, что это и есть бог. Теперь наступило прозрение: математики поняли, что их бог — ложный. Но истинный бог так и не открылся, и теперь им не оставалось ничего другого, как гадать, существует ли он вообще. «Пророк Моисей», который мог бы пролить на них свет истины, так и не появился. Математикам оставалось лишь терзаться не находящими ответа вопросами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x