Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

У некоторых вполне разумных критиков оснований математики сильное раздражение вызывали нюансы, по поводу которых спорили те, кто занимался основаниями. Если математика в конечном счете основана на интуиции, спрашивал один из таких критиков Имре Лакатош (или Лакатос; 1922-1974), то почему мы должны идти все дальше и дальше?

Почему бы нам не остановиться раньше и не заявить, что «окончательным критерием допустимости того или иного метода должен служить вопрос, является ли он интуитивно убедительным»… Почему честно не признать потенциальную возможность ошибки в математическом доказательстве и не попытаться защитить достоинство знания, возможно в чем-то и ошибочного, от циничного скептицизма, вместо того чтобы обманывать себя тем, будто мы всегда можем искусно заштопать последнюю прореху на ткани нашей «первичной» интуиции?

(Ср. также [52]*.)

По поводу относительной ценности интуиции и доказательства уместно привести следующую притчу. В кабинете одного врача над дверью висела подкова. Уходя после приема, пациент спросил врача, принесла ли ему подкова удачу в жизни и в работе. «Нет, — ответил врач, — я не верю в подобные предрассудки. Но все же подкова помогает».

Артур Стэнли Эддингтон заметил однажды: «Доказательство — это идол, во имя которого математики терзают себя». Почему же математики идут на такие муки ради строгого доказательства? Уместно спросить: чем, собственно, занимаются математики, ставящие превыше всего железную логику, если они не знают, непротиворечива ли их наука, и, в частности, не могут прийти к единому мне-иию относительно того, что такое правильное доказательство? Не следует ли им стать полностью безразличными к строгости, поднять руки вверх и заявить, что математика как свод твердо установленных истин не более чем иллюзия? Не должны ли они оставить дедуктивное доказательство и прибегать лишь к убедительным, интуитивно здравым аргументам? Ведь используют же интуитивные соображения физические науки, которые даже там, где они применяют математику, не придают особого значения пристрастию математиков к строгости. Но отказ от строгости вряд ли показан математике. Всякий, кто знает, какой вклад внесла математика в сокровищницу человеческого мышления, не станет жертвовать понятием доказательства.

Нельзя не признать важного значения логики для математики. Если интуиция — господин, а логика — всего лишь слуга, то это тот случай, когда слуга обладает определенной властью над своим господином. Логика сдерживает необузданную интуицию. Хотя, как мы и признали, интуиция играет в математике главную роль, все же сама по себе она может приводить к чрезмерно общим утверждениям. Надлежащие ограничения устанавливает логика. Интуиция отбрасывает всякую осторожность — логика учит сдержанности. Правда, приверженность логике приводит к длинным утверждениям со множеством оговорок и допущений и обычно требует множества теорем и доказательств, мелкими шажками преодолевая то расстояние, которое мощная интуиция перемахивает одним прыжком. Но на помощь интуиции, отважно захватившей расположенное перед мостом укрепление, необходимо выслать боевое охранение, иначе неприятель может окружить захваченную территорию, заставив нас отступить на исходные позиции.

Интуиция может и обмануть нас. На протяжении большей части XIX в. математики — в том числе Коши, одним из первых ставший насаждать математическую строгость, — считали, что любая непрерывная функция имеет производную. Но Вейерштрасс поразил математический мир, продемонстрировав непрерывную функцию, ни в одной точке не имеющую производной. {169}Такая функция недоступна интуиции. Математическое рассуждение не только дополняет интуицию, но и подтверждает, исправляет, а в иных случаях и превосходит ее.

То, что дают математикам логические рассуждения, можно пояснить с помощью аналогии. Предположим, фермер купил участок непроходимого леса, намереваясь расчистить его и заняться земледелием. Вырубив лес на небольшом пятачке, он заметил рыскавших в лесу диких зверей. Опасаясь их нападения, фермер вырубил лес, примыкавший к уже расчищенному участку, и звери отступили вместе с лесом. Теперь их можно было видеть чуть дальше — там, где на границе расчищенного участка стеной поднимался девственный лес. Фермер снова взялся за топор и т.д. до бесконечности. Каждый раз он расчищал все новый участок земли — звери отступали к кромке нетронутого леса. Спросим себя: чего же достиг фермер? По мере того как увеличивался свободный от леса участок земли, фермер обретал все большую безопасность, по крайней мере если он работал в центре расчищенного участка. Но звери не исчезли, они лишь отступили и когда-нибудь смогут неожиданно наброситься на фермера и растерзать его, хотя по мере увеличения размеров расчищенного участка фермер обретал все большую относительную безопасность. Аналогичным образом степень уверенности, с какой мы можем пользоваться центральным ядром математических знаний, возрастает по мере того, как логика применяется для выяснения то одной, то другой проблемы в основаниях математики. Иначе говоря, доказательство гарантирует нам относительную уверенность в правоте. Мы окончательно убеждаемся в правильности той или иной теоремы, если нам удастся доказать ее на основе разумных утверждений о числах и геометрических фигурах, которые интуитивно более приемлемы, чем доказываемая теорема. По словам Реймонда Луиса Уайлдера, доказательство — это проверка идей, подсказанных интуицией.

К сожалению, доказательства одного поколения воспринимаются другим поколением как ворох логических ошибок. Один из основоположников современной математики в США, Элиаким Гастингс Мур (1862-1932), выразил (1903) эту мысль так: «Любая наука, включая логику и математику, есть продукт своей эпохи. Наука воплощена в своих идеалах не в меньшей мере, чем в результатах». Век строгости короток — это всего лишь один день. В наше время понятие строгости зависит и от того, к какой школе принадлежит математик. Насколько можно судить, самого Уайлдера вполне устроило бы доказательство, не содержащее явных противоречий и к тому же полезное для математики. Например, он не стал бы возражать против понятия гипотезы континуума в качеству аксиомы. Не придавая особого значения доказательству, Уайлдер критиковал различные школы мышления за разобщенность. Разве не напоминает приверженность догматам одной школы в ущерб всем остальным фанатизм религиозных сектантов, провозглашающих своего бога истинным и отвергающих все остальные секты как заблудшие?

Мы не можем отрицать, что не существует ни абсолютного доказательства, ни даже доказательства, одинаково приемлемого для всех. Мы знаем, что если усомнимся в истинности утверждений, принятых на интуитивной основе, то сможем доказать их, лишь приняв на интуитивной же основе некие другие утверждения. Проверяя истинность утверждений, непосредственно воспринимаемых интуицией, мы не можем заходить слишком далеко, не рискуя столкнуться с парадоксами или другими неразрешенными трудностями, часть которых лежит в сфере логики. В начале XX в. знаменитый французский математик Жак Адамар высказал следующую мысль: «Цель математической строгости состоит в том, чтобы санкционировать и узаконить завоевания интуиции». Мы не можем теперь согласиться с Адамаром. Более уместно повторить вслед за Германом Вейлем: «Логика — это своего рода гигиена, позволяющая математику сохранять свои идеи здоровыми и сильными». Неверно утверждать, что доказательство не играет никакой роли: оно сводит к минимуму риск противоречий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x