Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

36

В расчетах, относящихся к большим областям земном поверхности (каковой можно считать и княжество Ганновер), приходится учитывать отличие поверхности Земля от плоскости; и обдумывая это обстоятельство, Гаусс пришел к глубокой концепции внутренней геометрии поверхности, задаваемой ее метрикой, т.е. измеряемым по поверхности расстояниям. Соответствующая теория была изложена Гауссом в обширном труде «Общие исследования о кривых поверхностях» [ Disquesitiones générales circa superficies curvas, 1828; русский перевод см. ([24], с. 123-161)], давно считающемся математической классикой.

37

Следует сказать, что наряду с определенным сходством между Гауссом и Коши существовало и резкое различие, определившее психологическое «отталкивание» этих выдающихся ученых. Бесконечно требовательный к себе, Гаусс публиковал сравнительно мало работ. Напротив, Коши публиковал свои работы, порой не отделывая их достаточно тщательно, так что в его книгах и статьях нередко встречались ошибки (обычно легко исправимые, но иногда и более серьезные), крайне раздражавшие Гаусса.

38

Андроник Родосский, выпустивший в I в. до н.э. собрание сочинений Аристотеля, назвал «Органоном» свод работ последнего по логике и строению наук, написанных независимо одна от другой и, видимо, в разное время; названием «Новый органон» Бэкон подчеркивал и близость свою к Аристотелю (по теме), и резкое различие (по установкам).

39

Мистик Ньютон был уверен (без всяких оснований, разумеется, — ср. сказанное выше о так называемой «проблеме трех тел») в неустойчивости Солнечной системы, тогда как в XVIII в. атеист и крайний рационалист Лаплас столь же безосновательно утверждал, что он может доказать ее устойчивость.

40

Это принадлежащее (или приписываемое) Лапласу высказывание выразительно демонстрирует успехи, которые к тому времени сделал «галилеев подход» к естественнонаучным проблемам (математическая формула, а не физическое описание). Ньютону бог был необходим для того, чтобы объяснить гравитационное «дальнодействие» (можно полагать, что паскалевское «определение» бога: «сфера, центр которой находится всюду, а периферия нигде», полностью снимающее вопрос об «агенте», передающем гравитационное воздействие, было достаточно близко Ньютону); именно этот «теологический» характер теории Ньютона делал ее неприемлемой для рационалистов Лейбница и Гюйгенса. Лаплас же полностью принял завет Галилея; никогда не спрашивать «как?», если мы можем ответить на вопрос «на сколько?»; поэтому для него бог в ньютоновской системе мира оказался уже вовсе ненужным.

41

Здесь имеется в веду, что в более полной (и совершенной) трактовке принципа наименьшего действия и иных вариационных принципов механики и физики речь идет не о наименьшем, а об «экстремальном» (т.е., наименьшем или наибольшем) значении рассматриваемой величины.

42

Не особенно эрудированному в области геометрии, но глубоко мыслящему Канту были впрочем, свойственны и глубоко нетривиальные прозрения. Так, в 1846 г. он писал, что трехмерность нашего пространства вытекает из характера закона всемирного тяготения Ньютона; это совершенно верно, но было строго доказано лишь много позже. Далее Кант утверждал, что из другого закона притяжения сил вытекала бы иная структура пространства, иное число измерений, причем если иные пространства возможны, то весьма вероятно, что бог их где-то действительно разместил.

43

Понятия пространства, времени и геометрии Кант считал априорными, заранее вложенными в наш разум и не подлежащими критике или замене какими-либо иными представлениями; высокий авторитет Канта закрепил эти ложные установки. Весьма вероятно, что именно нежелание вступать в конфликт с позицией столь высокочтимого в Германии философа побудили Гаусса не только воздержаться от публикация своих открытий в области неевклидовой геометрии, но и категорически запретить знающим об этом друзьям рассказывать кому-либо об его истинных воззрениях.

44

Истории проблематики, связанной с пятым постулатом Евклида, посвящена, в частности, книга Роберто Бонолы «Неевклидова геометрия», впервые вышедшая в 1906 г. на итальянском языке. Английский перевод: Bonola R. Non-euclidean geometry. — N.Y. Dover Publ., 1955 ([26]; см. также [27]).

45

Приводимое ниже описание воспроизводит схему рассуждений Саккери с небольшими изменениями. [В частности, за исходный пункт своих рассуждений Саккери — как позже и Ламберт — принял не аксиому Плейфера, а предположение, равносильное утверждению о равенстве суммы углов треугольника 180°; в опровержение этого предположения утверждалось, что сумма углов треугольника меньше (соответственно больше) 180°. — Ред. ]

46

Аналогичную мысль в свое время высказывал, правда мимоходом, и Ньютон, но на нее не обратили внимания.

47

Окончательного признания возможности неевклидовой геометрии у Ламберта все же не было; по-видимому, впервые решились на этот шаг упоминаемые ниже Ф.К. Швейкарт и его племянник Ф.А. Тауринус. Однако Ламберт высказал провидческую мысль о том, что неевклидова геометрия должна была бы выполняться на сфере мнимого радиуса, если бы такая сфера существовала; впоследствии эта, в то время казавшаяся бессодержательной, идея была реализована даже несколькими различными путями.

48

Книга Tentamen вышла в свет в 1832 г., однако уже в 1831 г. Я. Бойаи имел на руках оттиски своего Приложения (Appendix) к книге, один из которых он сразу же отправил Гауссу. Впрочем, Гаусс не получил этой работы и ознакомился с ней, лишь прочитав экземпляр книги своего друга Фаркаша Бойаи.

49

Саккери твердо считал, что доказал 5-й постулат Евклида; поэтому его никак нельзя считать создателем неевклидовой геометрии. Клюгеля и Ламберта в том контексте, в каком упоминает их автор, уместнее заменить Швейкартом и Тауринусом (ср. прим. {47}); однако малочисленность их публикаций на эту тему, которую они вскоре оставили (Ф.К. Швейкарт вообще был по специальности юристом, а не математиком), делает сомнительным их приоритет в создании неевклидовой геометрии. Более основательна стандартная точка зрения, приписывающая это выдающееся открытие Лобачевскому [первый публичный доклад на эту тему (1826); первая публикация (1829-1830)], Бойаи (явно независимая от Лобачевского публикация 1831-1832 гг.) и Гауссу.

50

И даже никакими экспериментами тоже; утверждение о существовании одной или многих прямых, проходящих через точку P и не пересекающих AB, апеллирует к представлению о всем (бесконечном!) пространстве и потому непроверяемо; опыты же с измерением суммы углов треугольника в принципе могут помочь установить отличие этой суммы от 180°, но никогда — равенство 180°; ведь всегда можно опасаться, что полученное нами значение столь близко к 180° лишь потому, что выбранный треугольник слишком мал.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x