Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, на фундаментальный вопрос о том, каким образом человек постигает истины, Юм отвечает, отрицая само существование истин: к истинам человек прийти не может. Теория Юма не только объявляла несостоятельным все, что было достигнуто в математике и естествознании ранее, но и поставила под сомнение ценность самого разума. Столь откровенное отрицание высшей способности человека было отвергнуто большинством мыслителей XVIII в. Как в математике, так и в других областях человеческой деятельности было слишком много накоплено, чтобы этим безболезненно поступиться, объявив бесполезным грузом весь приобретенный человечеством интеллектуальный багаж. Философия Юма встретила такое резкое неприятие у большинства мыслителей XVIII в., показалась им столь неприемлемой и противоречащей выдающимся успехам математики и естествознания, что возникла острая необходимость в ее опровержении.
Выполнить эту задачу взялся один из наиболее чтимых и глубоких философов всех времен — Иммануил Кант. Но при внимательном рассмотрении выяснилось, что итог его размышлений лишь немного более утешителен, чем философия Юма. В «Пролегоменах ко всякой будущей метафизике, могущей появиться как наука» (1783), Кант, казалось, встал на сторону математиков и естествоиспытателей:
Мы можем с достоверностью сказать, что некоторые чистые априорные синтетические познания имеются и нам даны, а именно чистая математика и чистое естествознание, потому что оба содержат положения, частью аподиктически достоверные на основе одного только разума, частью же на основе общего согласия из опыта и тем не менее повсеместно признанные независимыми от опыта.
([18], т. 4, ч. 1, с. 89.)«Критика чистого разума» (1781) Канта начинается еще более обнадеживающими словами. Кант утверждает, что все аксиомы и теоремы математики истинны. Но почему, спрашивает Кант, мы так охотно принимаем эти истины? Ясно, что опыт сам по себе не делает математические утверждения истинными. На интересующий нас вопрос можно было бы ответить, если бы мы знали ответ на более общий вопрос: возможна ли сама наука математика? На этот вопрос Кант ответил так: наш разум сам по себе владеет формами пространства и времени. Пространство и время представляют собой разновидности восприятия (Кант называл их интуитивными представлениями), посредством которых разум созерцает опыт. Мы воспринимаем, организуем и осознаем опыт в соответствии с этими формами созерцания. Опыт входит в них, как тесто в формочки для печенья. Разум накладывает формы созерцания на полученные им чувственные восприятия, вынуждая те подстраиваться под заложенные в нем схемы. Так как интуитивное представление о пространстве берет свое начало в разуме, некоторые свойства пространства разум воспринимает автоматически. Такие утверждения, как «прямая — кратчайший путь между двумя точками», «через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну», или как аксиома Евклида о параллельных, Кант называет априорными искусственными истинами. Они составляют неотъемлемую часть нашего умственного багажа. Геометрия занимается изучением лишь логических следствий из таких утверждений. Уже одно то, что наш разум созерцает опыт через изначально присущие ему «пространственные структуры», означает, что опыт согласуется с априорными синтетическими истинами и теоремами. Порядок и рациональность, которые мы, как нам кажется, воспринимаем во внешнем мире, в действительности проецируются на внешний мир нашим разумом и формами нашего мышления.
Конструируя пространство на основе работы клеток головного мозга человека, Кант не видел причин для отказа от евклидова пространства. Собственную неспособность представить другие геометрии Кант счел достаточным основанием, чтобы утверждать, что другие геометрии не могут существовать. Таким образом, нельзя утверждать, что законы евклидовой геометрии изначально присущи миру или что мир создан богом на основе евклидовой геометрии: законы евклидовой геометрии представляют собой лишь механизм, с помощью которого человек организует и рационализирует свои ощущения. Что же касается бога, то, по мнению Канта, природа божественного лежит за пределами рационального знания, хоть он и считал веру в бога обязательной. Глубина философских воззрений Канта, пожалуй, была превзойдена лишь ограниченностью его геометрических представлений. Прожив всю жизнь в Кенигсберге, в Восточной Пруссии, и не выезжая из него далее чем на шестьдесят километров, Кант тем не менее считал себя способным мысленно представить геометрию Вселенной. {42}
А как обстояло дело с математическими законами естествознания? Так как весь наш опыт вкладывается в формы чистого созерцания — пространство и время, математика должна быть применима ко всякому опыту. В «Метафизических начальных основаниях естествознания» (1786) Кант признал законы Ньютона и следствия из них самоочевидными. По утверждению Канта, ему удалось доказать, что законы Ньютона выводятся на основании чистого разума и что они не более чем допущения, позволяющие понять природу. Ньютон, по словам Канта, «позволил нам составить ясное представление о структуре Вселенной, которая во все времена будет одной и той же».
В более общем плане рассуждения Канта сводились к следующему. Мир науки — это мир чувственных ощущений, упорядоченных и управляемых разумом в соответствии с такими врожденными категориями, как пространство, время, причина и следствие, субстанция. Разум содержит своего рода «ложа», на которые должны укладываться «гости» извне. Чувственные ощущения рождаются в реальном мире, но, к сожалению, этот мир непознаваем. Реальность может быть познана только в субъективных категориях, создаваемых воспринимающим ее разумом. Следовательно, к организации опыта нет иного пути, кроме евклидовой геометрии и ньютоновской механики. По мере возникновения новых наук опыт расширяется, но разум формулирует новые принципы, не обобщая новые опытные данные, а используя для их интерпретации ранее бездействующие «ложа». Способность разума созерцать раскрывается только в том случае, если ее питает опыт. Этим объясняется относительно позднее познание некоторых истин, например законов механики, по сравнению с другими истинами, известными на протяжении многих столетий.
Философия Канта, которую мы здесь едва затронули, воздавала хвалу человеческому разуму, но отводила ему роль инструмента познания не природы, а тайников человеческого ума. Опыт получил должное признание как необходимый элемент познания, так как ощущения, поступающие из внешнего мира, Кант считал сырым материалом, который упорядочивается и организуется разумом. Математика обрела свое место, став открывателем необходимых законов разума.
Читать дальшеИнтервал:
Закладка: