Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нам нет необходимости вдаваться в подробности обоснования анализа «по Лагранжу». Помимо совершенно неудовлетворительного использования рядов Лагранж производил множество алгебраических преобразований, призванных скорее помешать читателю обнаружить немаловажное обстоятельство: отсутствие строгого определения производной. Все результаты, полученные Лагранжем, были обоснованы столь же плохо, как и результаты его предшественников. Лагранж был убежден, что ему удалось избавиться от понятия предела и построить весь анализ на основе алгебры. Несмотря на все допущенные Лагранжем ошибки, предложенный им вариант обоснования анализа имел несколько выдающихся продолжателей.

Мнение о том, что математический анализ представляет собой лишь продолжение алгебры, было подкреплено фундаментальным трехтомным трудом Сильвестра Франсуа Лакруа (1765-1843), вышедшим в 1797-1800 гг. Лакруа шел по стопам Лагранжа. В меньшей по объему однотомной работе под названием «Элементарный трактат по дифференциальному и интегральному исчислению» (1802) Лакруа использовал теорию пределов (точнее, то, что понимали под теорией пределов в начале XIX в.) — правда, по словам Лакруа, лишь для того, чтобы сэкономить место.

Некоторые английские математики начала XIX в. решили взять реванш над превосходившими их математиками из континентальной Европы. Чарлз Бэббедж (1792-1871), Джон Гершель (1792-1871) и Джордж Пикок (1791-1858), бывшие тогда выпускниками Кембриджского университета, основали Аналитическое общество и перевели краткий курс математического анализа Лакруа. {80}Однако в предисловии переводчиков говорилось следующее:

Сочинение Лакруа, перевод которого предлагается вниманию публики… может рассматриваться как сокращенный вариант его фундаментального труда по дифференциальному и интегральному исчислению, хотя при доказательстве первых принципов автор пользовался методом пределов Д'Аламбера вместо наиболее правильного и естественного метода Лагранжа, который он применил в более обширном своем сочинении…

Пикок утверждал, что теория пределов неприемлема, так как она отделяет принципы дифференциального исчисления от алгебры. Гершель и Бэббедж выразили полное согласие с мнением своего коллеги.

Насущная необходимость надлежащего обоснования математического анализа остро ощущалась в конце XVIII в. всем математическим миром, и по предложению Лагранжа отделение математики Берлинской академии наук, директором которой он состоял в 1766-1878 гг., назначила в 1784 г. приз (который должен был быть вручен в 1786 г.) за лучшее решение проблемы бесконечности в математике. Объявление об условиях конкурса гласило:

Своими предложениями, всеобщим уважением и почетным титулом образцовой «точной науки» математика обязана ясности своих принципов, строгости своих доказательств и точности своих теорем.

Для обеспечения непрестанного обновления столь ценных преимуществ этой изящной области знания необходима ясная и точная теория того, что называется в математике бесконечностью.

Хорошо известно, что современная геометрия [математика] систематически использует бесконечно большие и бесконечно малые величины. Однако геометры античности и даже древние аналитики всячески стремились избегать всего, что приближается к бесконечности, а некоторые знаменитые аналитики современности усматривают противоречивость в самом термине бесконечная величина.

Учитывая сказанное, Академия желает получить объяснение, каким образом столь многие правильные теоремы были выведены из противоречивого предположения, вместе с формулировкой точного, ясного, короче говоря, истинно математического принципа, который был бы пригоден для замены принципа бесконечного и в то же время не делал бы проводимые на его основе исследования чрезмерно сложными или длинными. Предмет должен быть рассмотрен во всей возможной общности и со всей возможной строгостью, ясностью и простотой.

К участию в конкурсе допускались все желающие, за исключением членов Академии, Всего на рассмотрение жюри поступило двадцать три работы. Официальное решение, опубликованное после окончания работы жюри, гласило:

Академия получила много работ на объявленную тему. Авторы всех работ не смогли объяснить, каким образом из противоречивого предположения — о существовании бесконечно большой величины — удалось вывести так много правильных теорем. Все авторы в большей или в меньшей степени пренебрегли требованиями ясности, простоты, а главное — строгости. Большинство из авторов даже не осознали, что принцип, который им надлежало найти, должен был не ограничиваться дифференциальным исчислением, а распространяться также на алгебру и геометрию, рассматриваемые в духе древних.

Учитывая изложенное, Академия считает, что ее требования удовлетворены не полностью.

Тем не менее жюри нашло, что в наибольшей мере удовлетворил требованиям участник конкурса, представивший работу на французском языке под девизом «Бесконечность — пучина, в которой тонут наши мысли». Ему и присужден приз.

Победителем оказался швейцарский математик Симон Люилье. В том же 1876 г. Берлинская академия опубликовала его «Элементарное изложение высшего анализа». Несомненно, решение, принятое математическим отделением Академии, по существу было правильным. Ни в одной из других работ (за исключением работы, представленной Карно; см. гл. VII) даже не делалось попытки объяснить, каким образом в математическом анализе исходя из ложных посылок удается вывести так много правильных теорем. Люилье, несомненно, заслуживал награды, хотя основная идея его работы была далеко не оригинальна. По словам самого Люилье, его работа представляла «развитие идей… бегло намеченных Д'Аламбером и как бы изложенных в его статье «Дифференциал», опубликованной в «Энциклопедии», и в его сочинении «Разное». Во вводной главе своего сочинения Люилье излагает слегка усовершенствованный вариант теории пределов. Впервые в печатном тексте он ввел для обозначения предела символ lim. Производную dP/dx (ранее встречавшуюся как отношение k/h ) Люилье обозначал lim ΔP/Δx , но вклад самого Люилье в теорию пределов был крайне незначительным.

Хотя почти каждый математик XVIII в. предпринимал попытку обосновать математический анализ или по крайней мере высказывал свое мнение по поводу столь важной проблемы, а два-три математика были на верном пути, все усилия оказались тщетными. Математики XVIII в. либо умышленно обходили все сколько-нибудь важные и тонкие проблемы, либо просто не замечали их. Различие между очень большим числом и бесконечно большой величиной они ощущали с трудом. Математикам XVIII в. казалось очевидным, что теорема, которая выполняется при любом конечном n, должна выполняться и при бесконечном n. Разностное отношение k/h [см. выражение (3)] они охотно заменяли производной, а сумму членов вида (7)с трудом отличали от интеграла. Переход от конечного к бесконечному как в одну, так и в другую сторону совершался ими необыкновенно легко и просто. Суть математики XVIII в., пожалуй, наиболее точно выразил Вольтер, охарактеризовавший [математический] анализ как «искусство считать и точно измерять то, существование чего непостижимо для разума». Предпринимавшиеся на протяжении века попытки строгого обоснования анализа, в особенности попытки, предпринятые такими гигантами науки, как Эйлер и Лагранж, лишь окончательно запутали и завели в тупик как их современников, так и математиков последующих поколений. В целом подобные попытки оказались безнадежно ошибочными — от них можно было бы прийти в отчаяние и усомниться в том, что математикам вообще когда-нибудь удастся разрешить проблему обоснования анализа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x