Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Критику идей Лейбница Беркли продолжил в своем «Аналитике» [«Аналитик, или Рассуждение, адресованное неверующему математику» ([21], с. 395-442)]:
Лейбниц и его последователи в их calculus differentialis без тени сомнения сначала предполагают и затем отвергают бесконечно малые величины, что не может не заметить любой мыслящий человек, наделенный ясным умом и здравостью суждений и не относящийся к такого рода вещам с предвзятой благосклонностью,
Отношение дифференциалов, утверждал Беркли, геометрически должно означать тангенс угла наклона секущей, а не касательной. Эту ошибку математики совершают, пренебрегая высшими дифференциалами. Так, «благодаря двойной ошибке вы приходите хотя и не к науке, но все же к истине», потому что одна ошибка компенсирует другую. Неудовольствие Беркли вызвал и второй дифференциал Лейбница d(dx) — «разность величины dx, которая и сама едва различима».
«Можно ли назвать действия современных математиков, — спрашивал Беркли, имея в виду подход как Ньютона, так и Лейбница, действиями людей науки, если они с гораздо большим рвением стремятся применить свои принципы, нежели понять их?» «Во всякой другой науке, — утверждал Беркли, — люди доказывают правильность заключений, исходя из принятых ими принципов, а не принципы, исходя из заключений».
Беркли завершал свой «Аналитик» целой серией вопросов. Вот некоторые из них:
Разве математики, столь чувствительные в вопросах религии, столь же скрупулезно придирчивы в своей науке? Разве не полагаются они на авторитет, принимая многое на веру, и разве не веруют они в вещи, непостижимые для разума? Разве нет у них своих таинств и, более того, своих несовместимостей и противоречий?
Многие математики выступили с ответом на критику Беркли, и каждый из них пытался, но безуспешно, обосновать математический анализ. Наиболее значительную попытку предпринял Эйлер. Он полностью отверг геометрию как основу анализа и начал работать с функциями чисто формально, т.е. строить рассуждения, исходя из алгебраического (аналитического) представления функций. Эйлер отверг и предложенное Лейбницем понятие бесконечно малой как величины, которая меньше любого заданного числа, но все же не равна нулю. В своем сочинении «Основы дифференциального исчисления» ( Institutiones calculi differentialis, 1755), классическом курсе математического анализа XVIII в., Эйлер привел следующее рассуждение:
Каждая величина, несомненно, может уменьшиться настолько, что исчезнет полностью и растает. Но бесконечно малая величина есть не что иное, как исчезающая величина, и поэтому сама равна нулю. Это полностью согласуется также с определением бесконечно малых величин, по которому эти величины должны быть меньше любого заданного числа. Ясно, что такая величина не может не быть нулем, ибо если бы она была отлична от нуля, то вопреки предположению не могла бы быть меньше самой себя.
Такие бесконечно малые, как dx (обозначение Лейбница), равны нулю, следовательно, равны нулю (dx) 2, (dx) 3 и т.д., утверждал Эйлер, потому что последние принято считать бесконечно малыми более высокого порядка, чем dx. Производная dy/dx (в обозначениях Лейбница), бывшая для Лейбница отношением бесконечно малых, понимаемых в его смысле, для Эйлера, по существу, обращалась в неопределенность 0/0. Эйлер утверждал, что 0/0 может принимать много значений, так как n∙0 = 0 при любом числе n, и, разделив равенство на 0, мы получим n = 0/0 . Какое именно значение принимает 0/0 для вполне определенной функции, можно установить с помощью обычного метода вычисления производной. Эйлер демонстрирует это на примере функции y = x 2. Придадим переменной x приращение h (Эйлер обозначал приращение ω ). Пока h, по предположению, не равно нулю. [Ср. сказанное в связи с выражениями (1)— (4).] Следовательно,
k/h = 2 x + h .
Там, где Лейбниц считал приращение h бесконечно малым, но не равным нулю, Эйлер положил h равным нулю, после чего отношение k/h, т.е. 0/0, оказалось равным 2x.
Эйлер подчеркивал, что эти дифференциалы (предельные значения k и h ) — абсолютные нули и из них нельзя извлечь ничего, кроме их отношения, которое и было вычислено в заключение и оказалось конечной величиной. В третьей главе «Основ анализа» Эйлера есть немало рассуждений такого рода. Стремясь приободрить читателя, Эйлер замечает, что понятие производной не столь уж загадочно, как обычно думают, хотя оно в глазах многих делает дифференциальное исчисление подозрительным. Разумеется, предложенное Эйлером обоснование метода нахождения производной было ничуть не более здравым, чем обоснования, предлагавшиеся Ньютоном и Лейбницем.
Формальный, некорректный подход Эйлера все же явился большим шагом вперед, ибо, избавляя математический анализ от традиционной основы — геометрии, подводил под него базу арифметики и алгебры. Этот шаг впоследствии привел к обоснованию анализа на основе понятия числа.
Наиболее претенциозная из последующих попыток заложить фундамент анализа была предпринята в XVIII в. Лагранжем. Подобно Беркли и другим своим предшественникам, Лагранж считал, что полученные с помощью анализа правильные результаты объясняются наложением и взаимной компенсацией ошибок. Свою собственную реконструкцию анализа Лагранж изложил в книге под названием «Теория аналитических функций» (1797; 2-е изд. — 1813). {79}Подзаголовок книги гласил: «Содержащая основные теоремы дифференциального исчисления, [доказанные] без использования бесконечно малых, исчезающих величин, пределов и флюксий, и сведенная к искусству алгебраического анализа конечных величин» (курсив М. К.).
Критикуя Ньютона, Лагранж, в частности, указывал, что, рассматривая предел отношения дуги к хорде, тот считал хорду и дугу равными не до и не после, а в момент исчезновения. В этой связи Лагранж заметил:
Такой метод чрезвычайно неудобен тем, что величины приходится рассматривать в тот самый момент, когда они, так сказать, перестают быть величинами, ибо, хотя мы всегда хорошо представляем отношения двух величин, покуда они остаются конечными, их отношение не дает уму никакого ясного и точного представления, коль скоро обе величины исчезают одновременно.
Лагранж не был удовлетворен ни бесконечно малыми величинами Лейбница, ни абсолютными нулями Эйлера, так как оба этих понятия, «хотя и правильны в действительности, все же недостаточно ясны для того, чтобы служить основанием науки, надежность выводов которой зиждется на ее очевидности».
Лагранж хотел придать математическому анализу всю строгость доказательств древних и стремился достичь желаемого путем сведения математического анализа к алгебре. В частности, Лагранж предложил использовать для строгого обоснования анализа бесконечные ряды, которые в то время было принято относить к алгебре, хотя с их обоснованием дело обстояло хуже, чем с обоснованием математического анализа. Лагранж «скромно» заметил, что его метод почему-то не пришел в голову Ньютону.
Читать дальшеИнтервал:
Закладка: