Морис Клайн - Математика. Поиск истины.
- Название:Математика. Поиск истины.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1988
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Поиск истины. краткое содержание
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.
Предназначена для читателей, интересующихся историей и методологией науки.
Математика. Поиск истины. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Он сознавал, что между магнитными и электрическими зарядами существует глубокое различие. Натирая стекло шелком, мы сообщаем стеклу положительный электрический заряд, а шелку — отрицательный. Затем, удалив стекло от шелка, мы можем получить положительный заряд на стекле, совершенно независимый от отрицательного заряда на шелке. Что же касается магнетизма двух родов, положительного и отрицательного, то, хотя, подобно разноименным электрическим зарядам, различные магнитные полюса притягиваются, а одинаковые отталкиваются, отделить положительный магнетизм от отрицательного в физических объектах не представляется возможным.
Однако, как показала длинная серия последующих экспериментов, детальное описание которых не входит в наши намерения, представление о наличии электрических зарядов двух типов неверно. В XX в. физики убедились, что существует электричество только одного рода {8}и носителями его являются крохотные частицы вещества (самые малые материальные тела из известных нам в природе), которые были названы электронами. Мы не можем видеть электроны, как не видим и более крупные частицы материи, называемые атомами, в состав которых входят электроны; однако косвенные данные, подтверждающие существование электронов, вполне убедительны. Отрицательно заряженное тело (т.е. тело, обладающее свойствами шелка, потертого о стеклянную палочку) содержит избыток электронов. Что же касается тел, которые мы ранее называли положительно заряженными (например, стекло, натертое шелком), то у них электронов не хватает. По-видимому, при натирании стекла шелком какое-то количество электронов уходит из стекла, притягиваясь к атомам шелка. В результате стекло, в котором недостает электронов, становится положительно заряженным, а шелк — отрицательно заряженным. О теле, содержащем нормальное количество электронов, говорят, что оно электрически нейтрально.
Располагая подходящими приспособлениями, мы можем изучать поведение заряженных тел. Например, если подвесить на нитях на небольшом расстоянии друг от друга два положительно заряженных стеклянных шарика, то они отталкиваются, так как оба заряжены положительно. Мы видим, что заряженные тела (равно как и магнитные полюса) взаимодействуют друг с другом. Ясно поэтому, что в электрических и магнитных явлениях мы имеем дело с силами, которые можно попытаться использовать на практике. Исследуем сначала различные явления, связанные с электричеством.
Естествоиспытатели конца XVIII в., поглощенные изучением взаимодействия заряженных тел, хорошо усвоив уроки своих предшественников, Галилея и Ньютона, занялись поиском количественных законов. Первое же открытие повергло их в изумление. Поскольку сила, с которой одно заряженное тело действует на другое, зависит от количества электричества (точнее величины электрического заряда) в каждом из тел, прежде всего необходимо было установить меру электричества. Определенное количество электричества надлежало принять за эталон (подобно тому как некоторое количество вещества было выбрано за единицу массы), чтобы сравнивать с этим эталоном количество электричества в исследуемых телах. Одной из общепринятых единиц измерения электрического заряда является кулон (Кл), названный так в честь французского физика Шарля Огюстена Кулона (1736-1806), открывшего тот самый закон взаимодействия электрических зарядов, к рассмотрению которого мы и перейдем. Два заряда, q 1 и q 2 , притягиваются или отталкиваются в зависимости от того, разноименны они (т.е. один положительный, а другой отрицательный) или одноименны (оба положительны или оба отрицательны). Кулон установил, что сила притяжения (или отталкивания) F , действующая между зарядами, определяется по формуле
F = kq 1q 2 / r 2,
где r — расстояние между двумя наборами зарядов, q 1 и q 2 , k — постоянная. Значение k зависит от единиц, в которых измеряются заряд, расстояние и сила.
Выведенная Кулоном формула обладает одной замечательной особенностью: по виду она идентична закону всемирного тяготения Ньютона. Заряды q 1 и q 2 выполняют здесь роль массы, а сила взаимодействия также обратно пропорциональна квадрату расстояния между зарядами, как и сила гравитационного притяжения, действующая между двумя массами. Разумеется, в законе Кулона сила электрического взаимодействия может быть как силой притяжения, так и силой отталкивания, в то время как сила тяготения всегда является силой притяжения.
В конце XVIII в. итальянский естествоиспытатель Луиджи Гальвани (1737-1798) взял два соединенных последовательно проводника из различных металлов и замкнул их концы на нерв препарированной лапки лягушки. Лягушачья лапка дернулась. Гальвани, занимавшийся изучением «животного электричества», объяснил сокращение мышцы возникновением в ней электрического тока. Однако значение этого открытия Гальвани по достоинству оценил другой итальянец, профессор физики университета в Падуе Алессандро Вольта (1745-1827). Вольта понял, что при контакте проводников из различных металлов между их свободными концами начинает действовать сила (получившая ныне название электродвижущей), и нашел более эффективную в этом отношении комбинацию металлов. Так был создан первый электрохимический элемент, или электрическая батарея. Заменив лягушачий нерв проводником и присоединив концы проводника к полюсам батареи, Вольта показал, что электродвижущая сила способна заставить крохотные частицы вещества перемещаться по проводнику. Такое направленное движение заряженных частиц (каковыми, как выяснилось много позже, являются электроны) по проводнику и есть электрический ток. Построенная Вольтой батарея заставляла электроны именно двигаться, а не скапливаться в каком-то материале, как, например, в янтаре, натертом мехом. Заметим попутно, что батарея Вольты в принципе не отличается от батарей и батареек, используемых ныне в автомобилях и карманных фонариках. Напряжение, создаваемое батареей, измеряется ныне в вольтах (В), единицах, названных в честь Вольты, а ток — в амперах (А), получивших название в честь ученого, с которым нам вскоре предстоит познакомиться; 1 А = 1 Кл/с или 6×10 8электрон/с.
Долгое время считалось, что электричество и магнетизм — явления различные и между собой не связанные. Однако в XIX в. представления в корне изменились, и взаимосвязь, установленная между электричеством и магнетизмом, подводит нас к самой сути нашего повествования. Впервые связь электрических и магнитных явлений обнаружил в 1820 г. датский физик, профессор Копенгагенского университета Ханс Кристиан Эрстед (1777-1851). Пропуская через проводник ток от батареи Вольты, Эрстед заметил, что подвешенная над проводником магнитная стрелка отклоняется. При изменении направления тока на обратное стрелка отклонялась на такой же угол, но в другую сторону. Это наблюдение Эрстеда можно объяснить тем, что электрический ток создает вокруг проводника магнитное поле, которое притягивает или отталкивает другие намагниченные тела так же, как природные магниты из железной руды, о которых писал в свое время Фалес Милетский.
Читать дальшеИнтервал:
Закладка: