Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Тут можно читать онлайн Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Жанр:
  • Издательство:
    Астрель: CORPUS
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - описание и краткое содержание, автор Джон Дербишир, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Дербишир
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

156

В 2004 г. Ксавье Гурдон, используя метод Одлыжко-Шонхаге, проверил, что десять триллионов нетривиальных нулей дзета-функции лежат на критической прямой. Это вычисление показывает, что Гипотеза Римана верна по крайней мере до высоты T , равной 2,4 триллиона. Читателю этой книги может быть небезынтересно, что «техническую» основу метода Гурдона составляет некоторый прием (из теории функций, а не теории чисел), называемый интерполяцией Чебышева. (Примеч. перев.)

157

Например, С. Дж. Паттерсон в своей книге «Введение в теорию дзета-функции Римана» в параграфе 5.11 пишет: «Наиболее убедительные аргументы, которые имеются к настоящему моменту в пользу справедливости Гипотезы Римана, — это справедливость аналогичного утверждения для дзета-функций, связанных с кривыми над конечными полями. Формальное сходство настолько впечатляюще, что трудно представить себе, как оно могло бы не приводить к еще более далеко идущим совпадениям » (курсив мой. — Дж. Д. ).

158

Clock (англ). — часы. (Примеч. перев.)

159

Попытаюсь выразить это в афористичной форме: алгебраистов заботит не столько то, чем являются вещи, сколько то, что с ними можно делать. Они — «отглагольные», а не «отсуществительные» люди. Другой интересный концептуальный взгляд на алгебру предложил сэр Майкл Атья в своей лекции в Филдсовском институте в Торонто в июне 2000 г. Тогда как геометрия с очевидностью имеет дело с пространством (говорил сэр Майкл, лауреат Филдсовской премии), алгебраисты имеют дело с временем. «Геометрия по существу статична. Я могу просто сидеть здесь и наблюдать, при этом может ничего не меняться, но это не мешает мне наблюдать. Алгебра, однако, имеет дело с временем, потому что там имеются операции, которые надлежит выполнять последовательно.» ( Шенитцер А., Атья М.Ф. Математика в двадцатом столетии. American Mathematical Monthly. Vol. 108. № 7.)

160

Здесь (как и в ряде других случаев в этой книге и повсеместно в математике в целом) название — скажем, «Гипотеза Римана» или «формула Эйлера», — стандартно используемое в некотором устоявшемся контексте, смело применяется расширительно, причем иногда в контекстах, очень далеких от исходного и таких, о существовании которых ученый, давший свое имя названию, и не подозревал. Когда при этом хотят вернуться к исходной теореме, формуле, гипотезе и так далее, иногда используют эпитет «классическая». (Примеч. перев.)

161

Андре Вейль (Andre Weil), один из наиболее прославленных математиков XX века, был братом героини французского Сопротивления и мистического философа Симоны Вейль. Он учился у Адамара в Коллеж де Франс. Следует отличать его от Германа Вейля (Hermann Weyl). (Исчезновение всякой разницы в написании по-русски, очевидно, лишь усложняет задачу «отличать» — и эта проблема в самом деле присутствует в русских математических текстах. — Примеч. перев.)

162

Для получения более ясной картины читателю все же может быть полезна формула, по которой получается характеристический многочлен матрицы 2x2. Общий вид такой матрицы ( a b c d ). Ее характеристический многочлен равен ( a − x)×(d − x) − bc. Таким образом и получается x 2− 11 x + 28. Далее автор рассматривает характеристические многочлены с точностью до общего ненулевого множителя. (Примеч. перев.)

163

Возможно, лучше было бы говорить «от 1 до N нулей», поскольку нули иногда повторяются. Нули многочлена x 2− 6 x + 9 — это числа 3 и 3. Данный многочлен разлагается на множители как (x − 3)(x − 3) . Поэтому вам может прийтись больше по душе говорить, что он имеет только один нуль, а именно 3. В строгом математическом смысле это «нуль кратности 2». Имеется, между прочим, способ приписывать подобную кратность любому нулю любой функции. Насколько известно, все нетривиальные нули дзета-функции имеют кратность 1, однако это пока не доказано. Если окажется, что какой-то нетривиальный нуль дзета-функции имеет кратность 2 или выше, то это само по себе не опровергнет Гипотезу, но произведет опустошение в некоторой части вычислительной теории.

164

На самом деле, конечно, речь идет об операторах. Математическая модель для описания динамических систем строится в терминах операторов. «Ансамбль» (в данном употреблении, кстати, это слово было введено Альбертом Эйнштейном) означает набор операторов, у которых общими являются некоторые статистические свойства.

165

Точнее говоря, сферой интересов Монтгомери была так называемая «задача числовых классов», доступное изложение которой можно найти в книге Кита Делвина «Математика: Новый золотой век», Columbia University Press, 1999.

166

Хэролд Даймонд — специалист по теории чисел. В настоящее время — профессор математики в Университете Иллинойса в Урбана-Шампейн.

167

Сарвадаман Чоула (1907-1995) — превосходный специалист по теории чисел, в основном работавший в Колорадском университете.

168

Стандартное введение в теорию случайных матриц: Мадан Лал Мехта. Случайные матрицы и статистическая теория энергетических уровней. New York: Academic Press. 1991.

169

Дайсон — еще один человек из Тринити, учившийся в этом колледже в начале 1940-х гг. По его воспоминаниям, состояние Харди, который в то время окончательно впал в депрессию, «было не слишком веселым».

170

Это поднимает интересный вопрос о том, в какой степени они могут являться «настоящими» теоремами. Некий результат, в котором предполагается справедливость ГР, с моей точки зрения, сам, строго говоря, является гипотезой — или, если угодно, подгипотезой, но уж никак не настоящей теоремой. С учетом того, что математика считается наиболее точной из всех наук, математики не слишком последовательны по поводу использования таких терминов, как «предположение», «гипотеза» и «теорема». Почему, например, Гипотеза Римана — «гипотеза», а не «предположение»? Я не знаю, и мне не удалось найти никого, кто мог бы мне это разъяснить. И на беглый взгляд кажется, что эти замечания применимы, по-видимому, и к другим языкам, а не только к английскому. По-немецки, кстати, Гипотеза Римана — Die Riemannsche Vermutung, от глагола vermuten — высказывать догадку. (Неудивительно. Древнегреческое слово «гипотеза» как раз и означает «предположение». — Примеч. перев. )

171

Майкл Берри — профессор физики в Бристольском университете в Англии. Возведен в рыцарское достоинство в июне 1996 г., став таким образом сэром Майклом Берри. Я очень старался упоминать его как Берри при описании его работ, сделанных до 1996 г., и как сэр Майкл после этого, но не гарантирую, что всегда был последователен.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы


Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x