Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
http://arxiv.org/abs/math.NT/0003234 — Примеч. перев. )
191
Математика и правдоподобные рассуждения (1954). (Русский пер. под ред. С.А. Яновской. М.: Наука. 1975. — Примеч. перев. )
192
Фрэнклин написал в 2001 г. прекрасную книгу о нематематической теории вероятностей под названием «Наука догадок». Я рецензировал ее для журнала The New Criterion в июне того же года. (См.:
http://www.newcriterion.com/articles.cfm/franklin-derbyshire-2175— Примеч. перев. )
193
Ради тех читателей, которых мое изложение воспламенило до такой степени, что они готовы немедленно бежать за покупкой какой-нибудь из математических программ, мне надо, видимо, заметить, что относительно достоинств различных таких программ ведутся яростные споры вполне в духе неувядающих дебатов на тему PC/Macintosh, причем создатель Mathematica Стивен Волфрам играет там роль Билла Гейтса. Будучи простым журналистом, я прошу считать себя на этой войне hors de combat (выбывшим из строя (франц.) — Примеч. перев. ). Я определенно не занимаюсь пропагандой от имени Mathematica. Она была первой математической программой, которая мне попалась, и осталась единственной, которой я пользовался. Она всегда делала то, что я ей говорил. Если уж начистоту, то иногда требовалось ее слегка пинать, но мне никогда не попадалась программа, которую не приходилось бы время от времени пинать.
194
По-английски — root ; на первый звук в этом слове и указывает буква ро, также представляющая звук «р» — в духе того, как греческая же буква мю (звук «м») использовалась в честь Мебиуса (см. главу 15). Математики часто применяют подобные фонетические соответствия в качестве мнемонических. Здесь может быть уместным упомянуть, наконец, что для англоязычного читателя ζ фонетически ассоциируется с буквой z. (Примеч. перев.)
195
Употребительных слов, особенно русских, не хватает, подобно тому как, по замечанию автора в главе 3, не хватает греческих букв; целые функции и целые числа имеют мало общего. (Примеч. перев.)
196
Хотя здесь нет прямой связи с нашими рассуждениями, я не могу удержаться и не сказать, в качестве интересного добавления, что одна из самых знаменитых теорем в теории функций комплексной переменной касается целых функций. Эту теорему сформулировал Эмиль Пикар (1856-1941). Теорема Пикара утверждает, что если целая функция принимает более одного значения — если, иными словами, она не равна просто-напросто постоянной, — то она принимает все (комплексные. — Примеч. перев. ) значения, кроме, быть может, одного. Значение, которое не принимает функция e z , — это как раз нуль.
197
Муравей Арг начинает свой путь из точки 1/ 2на вещественной оси (а не приходит, например, из «далекого юга» вдоль критической прямой). (Примеч. перев.)
198
Хотя в определении и есть некоторый произвол, для преодоления которого нет общего рецепта. Например, в программе Mathematica 4 функция Li (x) реализована как одна из встроенных функций, Loglntegral[х]. Для вещественных чисел она ровно такая, как я ее описал, — собственно, ее я и использовал для построения графика Li (x) в главе 7.viii. Однако для комплексных чисел определение интеграла, реализованное в Mathematica, слегка отличается оттого, которое использовал Риман. Поэтому для своих комплексных вычислений я не использовал определение Loglntegral[х] из Mathematica, а определил там Li (x 1/2+ ir ) как ExpIntegralEi[(1/2 + Ir)Log[x]].
199
Одним глазом разглядывая этот список, а другим — рисунок 21.3, можно видеть, что тенденция, согласно которой первые несколько нулей отправляются в числа с отрицательными вещественными частями, представляет собой лишь случайный эффект, и дело вскоре поправляется.
200
На рисунках 21.5и 21.6нуль, комплексно сопряженный к k- му нулю, обозначен как (−k)- й нуль. Разумеется, неверно, что ρ' = −ρ .
201
Заметим, что 639:1050 = 0,6085714…. Для больших чисел N вероятность того, что N свободно от квадратов, равна ~ 6/ π 2, т.е. 0,60792710…. Вспоминая из главы 5 найденное Эйлером решение базельской задачи, можно заметить, что эта вероятность равна 1/ ζ (2). Это верно и в общем случае. Вероятность того, что положительное целое число N , выбранное случайным образом, не делится на п- ю степень никакого целого числа, равна ~ 1/ ζ(n). Например, среди всех чисел, не превышающих 1000 000, в действительности 982 954 не делятся ни на какую шестую степень; при этом 1/ ζ (6) равняется 0,98295259226458….
202
На домашней страничке Ульрике на веб-сайте Ульмского университета вывешена фотография, на которой она стоит рядом с надгробным камнем Бернхарда Римана в итальянской Селаске.
203
Джонатан Китинг — профессор прикладной математики в Бристольском университете в Англии. Он тесно сотрудничал с сэром Майклом Берри в исследовании физических аспектов ГР.
204
«Нули преобразования Меллина от функции Эрмита имеют вещественную часть одна вторая» (1986). Соавтором Бампа по доказательству был некто Е.К.-С. Нг, о котором мне больше ничего не известно.
205
Независимое федеральное агентство в США, созданное по решению Конгресса США в 1950 г.; среди его целей первой названа цель способствовать развитию науки. (Примеч. перев.)
206
Мне, по крайней мере, так кажется. Однако один профессиональный математик, познакомившийся с рукописью этой книги, выразил по этому поводу искреннее недоверие. Математикам исключительно сложно всерьез принять мысль о том, что занятиями математикой можно зарабатывать серьезные деньги.
207
От англ . clarity — ясность, прозрачность. (Примеч. перев.)
208
Мартин Хаксли — профессор чистой математики из университета Уэльса в Кардиффе.
209
Без примесей, чистокровный (франц.). (Примеч. перев.)
210
Гипотеза Римана эквивалентна, в частности, ряду утверждений о делителях натуральных чисел, например, такому утверждению: «Для всякого натурального числа n ≥ 5041 сумма его делителей меньше величины e γn ln(ln n )». Здесь γ — упоминавшееся число Эйлера-Маскерони, в России чаще называемое просто постоянной Эйлера . (Примеч. перев.)
211
Цепь событий в наикратчайшем изложении такова. Метод, принятый в Principia Mathematica, не давал гарантии от ошибок, подобных той, на которую Рассел обратил внимание в работе Фреге. Программа «метаматематики» Гильберта ставила целью объять и логику, и математику в единый четкий формализм. Это послужило мотивировкой исследований Курта Геделя и Алана Тьюринга. Гедель доказал ряд важных теорем путем построения соответствия между символами типа гильбертовых и числами; Тьюринг закодировал и инструкции, и данные в виде чисел в своей идее «машины Тьюринга». Ухватившись за эту идею, Джон фон Нейман развил концепцию хранящейся в памяти программы — концепцию, на которой основано все современное программное обеспечение и согласно которой и код, и данные можно единообразно представить в памяти компьютера…
Читать дальшеИнтервал:
Закладка: