Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
172
Где-то в конце 1980-х Cray-1 был дополнен компьютером Cray X-MP.
173
Самой ранней ссылкой на закон Монтгомери-Одлыжко (именно под таким названием), которую мне удалось найти, является статья Николаса Каца и Питера Сарнака, опубликованная в 1999 г. Слово «закон» здесь, конечно, понимается в физическом, а не в математическом смысле. Это факт, установленный эмпирическим путем, как законы движения планет, сформулированные Кеплером. Это не математический принцип, подобный правилу знаков. В статье Сарнака и Каца на самом деле был доказан закон для дзета-функций над конечными полями (см. главу 17.iii), что позволило перекинуть мост между алгебраическим и физическим подходами к ГР.
174
http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html (Примеч. перев.)
175
Ответ не гласит «половина». Сказать «половина» означало бы перепутать середину и среднее. Среднее из четырех чисел 1, 2, 3, 8 510 294 равно 2 127 575, но половина из них меньше, чем 3.
176
Известного в математике как «распределение Пуассона». Здесь, кстати, повсюду присутствует число e : например, указанное число 6 321 есть 10 000(1 − 1/ e ).
177
Уравнение, которым задается изображенная на рисунке 18.5 кривая, имеет вид y = (320 000/ π 2) x 2 e −4 х∙x / π . Это скошенное распределение, а не симметричное, как гауссовское нормальное. Его пик находится при аргументе 1/ 2√ π , т.е. 0,8862269…. Эту кривую для распределения последовательных интервалов ГУА предложил в качестве догадки Юджин Вигнер. Его догадка основывалась на небольшом количестве данных, собранных из экспериментов на атомном ядре. Позднее оказалось, что это не в точности правильная кривая, хотя она и находится в пределах ошибки около 1%. Истинная кривая, которую нашел Мишель Годен, описывается более сложным уравнением. Эндрю Одлыжко пришлось написать целую программу, чтобы ее нарисовать.
178
Свершившийся факт (франц.) (Примеч. перев.)
179
Уравнение живой силы — термин из истории механики. В современной русской научной литературе он мало распространен, и в переводе оставлено оригинальное латинское название. Данное уравнение выражает собой закон сохранения энергии при орбитальном движении. Здесь M — произведение гравитационной постоянной на массу того тела, вокруг которого обращается спутник, r — расстояние до фокуса, а a — главная полуось орбиты. (Примеч. перев.)
180
Хотя слово «хаос» и не применялось к этим теориям, пока физик Джеймс Йорк не ввел его в оборот в 1976 г. Бестселлер Джеймса Глейка 1987 г. «Хаос. Создание новой науки» остается лучшим введением в теорию хаоса для простых людей… если не считать пьесы Тома Стоппарда «Аркадия» 1993 г. (Русский перевод книги Глейка вышел в 2001 г. в издательстве «Амфора». — Примеч. перев. )
181
Лауреат медали имени Макса Планка 2003 г. за развитие квантовой теории металлов. (Примеч. перев.)
182
Чтобы у читателя не возникало ощущение систематического надувательства, стоит, возможно, заметить, что, например, √3 в характеристическом многочлене — это котангенс 30 градусов, т.е. угла поворота. (Примеч. перев.)
183
Курт Хензель (Гензель) (1861-1941) — еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель — ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» ( Купферберг X. Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе — университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversität Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». — Примеч. перев. )
184
И как минимум один математик в письменном виде выразил сдержанный скептицизм. В рецензии на статью Конна 1999 г. «Следовые формулы в некоммутативной геометрии и нули дзета-функции Римана» Питер Сарнак (не являющийся ни математиком X , ни математиком Y ) заметил: «Аналогии и вычисления в статье и в приложениях к ней многозначительны, симпатичны и замысловаты, и по этой причине представляется, что предложено нечто большее, чем просто еще одна эквивалентная переформулировка ГР. Однако рецензенту не очевидно, удастся ли на самом деле использовать развитые здесь идеи, в частности пространство X , для получения каких-нибудь новых результатов о нулях функции L(s, λ) ». Функция L(s, λ) , о которой пишет Сарнак, представляет собой один из тех аналогов дзета-функции Римана, которые упоминались в главе 17.iii.
185
Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.
186
Это длинное шведское название буквально и означает: «Шведская компания по страхованию жизни». (Примеч. перев.)
187
«Прикасаясь к скучным формулам своей волшебной палочкой, он превращал их в поэзию», — вспоминал Гуннар Блом в своем очерке, включенном в собрание трудов Крамера. Крамер (1893-1985) — еще один «бессмертный». Он умер спустя несколько дней после своего 92-летия.
188
Я позаимствовал этот мысленный эксперимент из главы 3 книги «Простые числа и их распределение», которую написали Джеральд Тененбаум и Мишель Мендес-Франс ( American Mathematical Society publications , 2000).
189
Хорошая статья на эту тему — «Нормально ли π ?» Стена Вейгена ( Mathematical Intelligencer. Vol. 7. № 3).
190
У меня имеется распечатка недавней статьи Хью Монтгомери и Каннана Сундарараджана «За пределами парных корреляций», которая наносит еще один удар по модели Крамера. Статья заканчивается такими словами: «…по-видимому, здесь происходит нечто такое, что еще предстоит понять». (Эта статья доступна по адресу:
Читать дальшеИнтервал:
Закладка: