Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Функция | Интеграл |
---|---|
x −3 | − 1/ 2 x −2 |
x −2 | − x −1 |
x −1 | ln x |
x 0 | x |
x 1 | 1/ 2 x 2 |
x 2 | 1/ 3 x 3 |
x 3 | 1/ 4 x 4 |
Таблица 7.2.Интегралы функций x N .
Если производные годятся для того, чтобы выражать наклон функции — т.е. скорость, с которой функция изменяется в данной точке, — то для чего же годятся интегралы? Ответ: для нахождения площадей под графиками.

Рисунок 7.3.Для чего пригодно интегрирование.
Функция, показанная на рисунке 7.3, а это в действительности функция 1/ x 4, т.е., другими словами, x −4, — ограничивает собой некоторую площадь между аргументами x = 2 и x = 3. Чтобы найти эту площадь, сначала надо найти интеграл от x −4. Согласно приведенному выше общему правилу, этот интеграл равен − 1/ 3 x −3, т.е. −1/(3 x 3). Эта функция, как и всякая другая, имеет значение для каждого x из своей области определения. Чтобы найти площадь между аргументами 2 и 3, надо вычислить значение интеграла при аргументе 3, затем вычислить значение интеграла при аргументе 2, а потом вычесть второе значение из первого.
При x = 3 значение функции −1/(3 x 3) равно − 1/ 81, при x = 2 оно составляет − 1/ 24. Вычитаем, не забывая, что вычесть отрицательное число — это все равно что прибавить соответствующее положительное: − 1/ 81− (− 1/ 24) = 1/ 24− 1/ 81, что равно 19/ 648, т.е. примерно 0,029321.
У математиков есть специальный способ для записи всей этой процедуры: , что читается как «интеграл от икс в минус четвертой степени по дэ-икс от двух до трех». (Не слишком озадачивайтесь этим самым «по dх » — назначение этих слов состоит в указании, что именно x является основной переменной, с которой мы работаем, и именно ее интеграл надо найти. Если под знаком интеграла окажутся еще другие переменные, то они будут там присутствовать праздно, интегрирование ведется не по ним. В главе 19 у нас появится такой пример.)
Далее. Иногда оказывается возможным отправить правый конец интегрирования на бесконечность, но при этом получить конечную площадь. Это напоминает ситуацию с бесконечными суммами: если значения ведут себя должным образом, такие суммы могут сходиться к конечному значению. То же и здесь. У функций, которые ведут себя должным образом, площадь под кривой может оказаться конечной, несмотря даже на то, что область бесконечно длинная. Интегралы связаны с суммами на глубинном уровне. Даже знак интеграла, впервые использованный Лейбницем в 1675 году, представляет собой вытянутое S, обозначающее «сумму».
Смотрите: предположим, что вместо того, чтобы останавливаться на тройке, мы бы продолжили интегрирование до x = 100. Тогда, поскольку куб числа 100 равен 1 000 000, наше вычисление приобрело бы вид:
(− 1/ 3 000 000) − (− 1/ 24) = 1/ 24− 1/ 3 000 000.
Ясно, что если бы мы пошли еще дальше, то второе слагаемое стало бы еще меньше. По мере того как мы спешим к бесконечности, оно постепенно угасает, стремясь к нулю, и у нас есть полное право написать:

Стоит заметить, что, когда интеграл используется для вычисления площади, x исчезает из ответа: вместо x подставляются числа и в ответе получается число.
Вот и все. Клянусь, это все, что нам понадобится из дифференциального и интегрального исчисления. И поскольку ничего нового вводиться не будет, пользоваться дифференциальным и интегральным исчислением мы начнем прямо сейчас. С их помощью мы определим новую функцию, которая чрезвычайно важна в теории простых чисел и дзета-функции.
Сначала рассмотрим функцию 1/ln t . Ее график показан на рисунке 7.4. Обозначение для аргумента заменено с x на t по той причине, что букве x отведена другая роль, чем просто быть бессловесной переменной.
На рисунке затемнена некоторая область под графиком, поскольку мы сейчас устроим небольшое интегрирование. Как только что объяснялось, интегрирование — это способ вычислить площадь под графиком функции. Сначала надо найти интеграл от интересующей нас функции, а потом взять калькулятор. Итак, каков же интеграл от функции 1/ln t ?
К сожалению, в домашнем хозяйстве нет обычной функции, которая позволила бы выразить интеграл от 1/ln t . Но интеграл этот весьма важен. Он снова и снова появляется в исследованиях, связанных с Гипотезой Римана. Поскольку нежелательно писать всякий раз, как потребуется эта монструозная конструкция, мы попросту определим новую функцию, выражаемую этим интегралом, и выдадим ей свидетельство, что это добропорядочная и уважаемая функция, ни в чем не уступающая другим своим коллегам.
Рисунок 7.4.Функция 1/ln t .
У этой новой функции есть имя: ее зовут интегральный логарифм. Для нее обычно используется обозначение Li( x ). (Иногда пишут li( х ).) Она определена как функция, выражающая площадь под кривой — то есть под графиком функции 1/ln t — от нуля до x . [59]
Здесь не обошлось без некоторой ловкости рук, потому что у функции 1/ln t нет значения при t = 1 (из-за того что логарифм единицы равен нулю). Я обойду эту сложность, не углубляясь в нее, — просто заверю вас, что имеется некоторый способ привести все в порядок. Надо еще заметить, что при вычислении интегралов области ниже горизонтальной оси считаются отрицательными, так что по мере увеличения t область справа от 1 «тратится» на сокращение области слева от 1. Другими словами, Li( x ) выражается затемненной областью на рисунке 7.4, причем отрицательный вклад в площадь, набираемый слева от t = 1, гасится положительным вкладом от площади справа от t = 1 (когда x лежит справа).
На рисунке 7.5 показан график функции Li( x ). Мы видим, что она принимает отрицательные значения, когда x меньше единицы (поскольку соответствующая площадь на рисунке 7.4дает отрицательный вклад), но по мере того, как x уходит направо от 1, положительный вклад в площадь постепенно сокращает отрицательный, так что Li( x ) возвращается из отрицательной бесконечности, достигает нуля (т.е. отрицательный вклад в площадь полностью сокращается) при аргументе x = 1,4513692348828…, а после этого уже постоянно возрастает. Наклон этой функции в каждой точке равен, конечно, 1/ln x . А это, как мы видели в главе 3.ix, есть вероятность того, что целое число в окрестности числа x окажется простым. [60]
Читать дальшеИнтервал:
Закладка: