Генри Дьюдени - Пятьсот двадцать головоломок

Тут можно читать онлайн Генри Дьюдени - Пятьсот двадцать головоломок - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1975. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пятьсот двадцать головоломок
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1975
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание

Пятьсот двадцать головоломок - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.

Пятьсот двадцать головоломок - читать онлайн бесплатно полную версию (весь текст целиком)

Пятьсот двадцать головоломок - читать книгу онлайн бесплатно, автор Генри Дьюдени
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

61. За 3 мин. Команда в стоячей воде проходит ⅕ всего расстояния в минуту, а течение — всего расстояния в минуту. Разность и сумма этих дробей равны соответственно и . Следовательно, путь против течения займет (или 8 ) мин, а по течению (или 3 ) мин.

62. Если я прошагаю 26 ступенек; то мне потребуется на спуск 30 с, а если 34, то — 18 с. Умножая 30 на 34 и 26 на 18, мы получим 1020 и 468, разность между этими числами равна 552. Разделив ее на разность между 30 и 18 (то есть на 12), мы получаем в ответе 46, число ступенек на эскалаторе, который движется со скоростью 1 ступенька за 1½ с. Скорость, с которой я двигаюсь по эскалатору, роли не играет, поскольку ступенька, с которой я схожу, достигает платформы в один и тот же момент вне зависимости от того, что я делал до этого.

63. Пусть Андерсон проедет 11 км, бросит велосипед и оставшуюся часть пути пройдет пешком. Браун будет идти пешком до тех пор, пока не подберет велосипед, а затем проедет на нем оставшуюся часть пути. При этом он прибудет в пункт назначения одновременно с Андерсоном, и весь путь займет у них 3 ч 20 мин. Можно также разделить 20 км на 9 участков по 2 км каждый, причем Андерсон должен будет ехать первым. В этом случае Андерсон проедет каждый из своих 5 участков за ч и пройдет пешком каждый из оставшихся 4 участков за ч, затратив на весь путь 3⅓ ч. Браун проедет каждый из своих 4 участков за ч и пройдет пешком каждый из оставшихся 5 участков за ч, затратив на весь путь также 3⅓ ч. Расстояния, которые проедут Андерсон и Браун соответственно, относятся друг к другу как 5 к 4, а расстояния, которые они пройдут пешком, как 4 к 5.

64. Андерсон проезжает 7 , Браун 1 , а Картер 11 км, что в сумме составляет 20 км. Они могут ехать в любом порядке, но при этом каждый должен воспользоваться велосипедом только один раз, а второй ездок должен идти пешком и до и после езды. Путешествие займет у каждого 3 ч, и, следовательно, все прибудут в пункт назначения одновременно.

65. Аткинс везет Кларка 40 км и высаживает, чтобы оставшиеся 12 км тот прошел пешком. Затем он возвращается назад, в 16 км от старта подбирает Болдуина и везет его до конца пути. Все трое тратят на дорогу 5 ч. Другое решение состоит в том, что Аткинс сначала 36 км везет Болдуина и возвращается за Кларком, прошедшим к этому времени 12 км. Мотоцикл в обоих случаях проехал по 100 км, в том числе 24 км без пассажиров.

66. Проделанное связным расстояние равно квадратному корню из удвоенного квадрата 40, прибавленному к 40, что составляет 96,568 км, или приблизительно 96½ км.

67. Относительная скорость встречных поездов составляет 600 футов в 5 с, или 81 миль/ч. Когда поезда движутся в одном направлении, то их относительная скорость составляет 600 футов в 15 с, или 27 миль/ч. Отсюда мы получаем, что скорость более быстрого поезда равна 54 миль/ч, а скорость более медленного — 27 миль/ч.

68. Существуют два расстояния, удовлетворяющих условию задачи, — 210 и 144 мили. Последней случай исключен, так как в условии сказано, что поезда движутся со скоростями, «не слишком отличающимися от обычных». (Если бы мы приняли расстояние в 144 мили, то А прошел бы 140 миль за то же время, за которое B и D прошли бы 4 мили. Так что если бы последние шли со скоростью 2 миль/ч, то первый делал бы 70 миль/ч — скорость, которую, конечно, нельзя назвать «не слишком отличающейся от обычных»!) Если расстояние равно 210 милям, то окажется, что скорости B и D в два раза меньше скорости A , а скорость C составляет ¾ скорости A , что выглядит вполне разумным.

69. Расстояние от Англчестера до Клинкертона составляет 200 миль. Поезд прошел 50 миль со скоростью 50 миль/ч и 150 миль со скоростью 30 миль/ч. Если бы поломка произошла на 50 миль дальше, то поезд прошел бы 100 миль со скоростью 50 миль/ч и 100 миль со скоростью 30 миль/ч.

70. Когда Браун оставил позади всего лишь ⅙, или , всей дистанции, Томкинс уже прошел ⅚ минус , или , всей дистанции. Следовательно, скорость Томкинса в раза больше скорости Брауна. Брауну осталось пробежать ⅚, а Томкинсу — только ⅙ всей дистанции. Следовательно, Браун, чтобы прибежать хотя бы одновременно, должен развить скорость, в 5 раз превышающую скорость Томкинса, то есть в 5 раз большую , или бежать в раза быстрее, чем он бежал первоначально. Однако вопрос ставился не «во сколько раз», а «на сколько», а «в раза быстрее» — это все равно, что быстрее на первоначальной скорости Брауна. Правильным ответом, следовательно, будет: на 20¼ первоначальной скорости быстрее, хотя похоже на то, что такая рекомендация практически неосуществима.

71. Утверждение о равенстве средних скоростей ошибочно. В действительности средние скорости кораблей не равны. Первый корабль проходит милю за ч в одном направлении и за ⅛ ч в обратном. Полусумма этих дробей равна . Следовательно, средняя скорость, с которой первый корабль проходит 400 миль, равна 1 миле за ч. Средняя скорость второго корабля составляет 1 милю за ч.

72. Расстояние между двумя пунктами равно 18 км. Точки встречи отстоят от A и B на 10 и 12 км соответственно. Умножьте 10 (первое расстояние) на 3 и вычтите второе расстояние — 12. Что может быть проще? Испробуйте другие расстояния до точек встречи (следя за тем, чтобы первое расстояние составляло более ⅔ второго) и вы обнаружите, что это правило действует с неизменным успехом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пятьсот двадцать головоломок отзывы


Отзывы читателей о книге Пятьсот двадцать головоломок, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x