Алексей Лосев - Хаос и структура

Тут можно читать онлайн Алексей Лосев - Хаос и структура - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1993. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Хаос и структура
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    1993
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алексей Лосев - Хаос и структура краткое содержание

Хаос и структура - описание и краткое содержание, автор Алексей Лосев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.

"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Хаос и структура - читать онлайн бесплатно полную версию (весь текст целиком)

Хаос и структура - читать книгу онлайн бесплатно, автор Алексей Лосев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Понятие вещи есть отражение вещи. Однако это будет пустой и незначащей фразой, если мы четко не покажем конкретного строения самого понятия. Если понятие есть такое отражение, что оно есть абстрактная общность, не имеющая никакого отношения к индивидуальным вещам и к индивидуальным представлениям, то какое же это отражение? Это — пустая фраза, а не отражение. Если же понятие всерьез отражает вещь, то его общность должна сохранить в себе все бесконечное богатство индивидуального, что есть в вещах данного рода. Но так как это индивидуальное нельзя понимать здесь буквально (ибо тогда общее понятие просто растворилось бы в море частностей), то оно дано здесь как принцип получения индивидуального во всем его бесконечном и непрерывном нарастании, как метод охвата всех индивидуальных явлений, сюда относящихся, как закон непрерывного становления данного общего в любой частной и случайной обстановке, предел этого становления.

Такое вот понимание общего понятия действительно и всерьез хочет выставить на первый план именно познавательную роль понятия и показать ее на структуре самого понятия, а не отделаться здесь пустой и ничего не говорящей фразой. Но это понимание—всецело инфинитезимальное. Если понятие, дифференцируясь, создает свою производную функцию, то этим сразу охватывается и то, что оно есть отражение вещи, и то, что как сама вещь, так и оно само находятся в непрерывном становлении, и то, что оно содержит в себе принцип охвата бесконечного богатства относящихся к нему изменений материального мира.

Так три огромных вопроса о логической природе понятия (а стало быть, и мышления) получают с точки зрения учения о бесконечно–малых одно из самых глубоких и оригинальных решений.

Если мы хорошо усвоили понятие производной, можно перейти наконец и к понятиям дифференциала и интеграла в логике. После всего предыдущего исследования оно уже не составит для нас больших трудностей.

10. ДИФФЕРЕНЦИАЛ В ЛОГИКЕ

1. Для усвоения дифференциала как логической категории посмотрим, как рассуждают математики в их собственной науке.

Чтобы получить категорию дифференциала, уже надо иметь категорию производной. Что такое производная, мы знаем. Допустим, что у нас уже имеется производная у' от какой–нибудь функции у. Возьмем какое–нибудь любое, т. е. совершенно произвольное, приращение независимого переменного ∆х и возьмем произведение данной производной на это произвольно выбранное приращение х. Это произведение

dy=y'∆x

и есть не что иное, как дифференциал функции у.

Для тех, кто не имеет математического образования и сталкивается с этим выражением впервые, необходимо заметить, что выражение это имеет мало общего с получением производной. Хотя произвольно выбранное приращение независимого переменного, а значит, и сам дифференциал неизменно текут и непрерывно становятся, самый этот процесс бесконечно малого становления скрыт [207] В рукописи: закрыт. здесь только в самой производной, но совершенно не имеется в виду ни в том, ни в другом приращении. Приращение независимого переменного Ах есть нечто совершенно не зависящее от нас, нечто вполне произвольное; это какое угодно приращение, а не только то бесконечно–малое, которое было нам необходимо для получения производной. В связи с этим и дифференциал, хотя он даже в двойном смысле предполагает непрерывность становления, во–первых, ту, благодаря которой возникает производная, и, во–вторых, свою собственную, — сам по себе все же является некоей определенной и устойчивой величиной и есть не становление, но результат этого становления, т. е. ставшее.

Математики говорят—очень выразительно — еще и так. Дифференциал функции есть функция двух разных переменных, ибо и производная, и произвольное приращение Δx тут совершенно независимы друг от друга. Произвольное приращение независимого переменного потому и называется произвольным, что оно не связано здесь никакими условиями. Α ∆х входившее у нас для получения производной, как бесконечно–малое не имеет ничего общего с нашим теперешним ‹∆у.

Предыдущее определение дифференциала функции мы можем определить и несколько иначе, давши более симметричную формулу. А именно, что такое это ΔχΊ Чтобы ответить на этот вопрос, определим, что такое был бы дифференциал от х, т. е. для случая, если функцией от χ является сам же χΊ Так как производная от самого независимого переменного равняется единице, то приведенную выше формулу мы можем переписать так:

dx=∆x,

т. е. для случая, когда χ есть независимое переменное, можно писать:

dy=y'dx.

Другими словами, дифференциал функции равен произведению ее производной на дифференциал независимого переменного.

2. Надо сказать, что, давая столь ясное и безупречное построение, математики очень мало сделали для его логического разъяснения (да они едва ли и были обязаны это делать, так что насколько формально ясна и отчетлива математическая идея дифференциала, настолько неясна и неотчетлива она логически).

Что такое дифференциал функции? Самое грубое разъяснение этого заключалось бы в том, что это — обыкновенная конечная величина. Позитивисты из математиков так обыкновенно и бахвалятся, что–де тут и задумываться не над чем: дифференциал, если его вычислить, есть 1, 2, 3 или какое–нибудь другое число или величина. По–видимому, это очень примитивное суждение. Таким образом можно аннулировать весь математический анализ, так как производная тоже может быть конечной величиной, интеграл — гоже конечная величина, всякий предел тоже есть нечто конечное или по крайней мере точно установленное, постоянное и т. д. и т. д. Математическое опровержение этого заключается в том, что дифференциал есть не просто величина, но—функция, т. е. предполагает наличие определенного закона получения этой величины. Кроме того, дифференциал даже и в виде функции отнюдь не всегда имеет определенное значение. Известны такие непрерывные функции, которые не во всех своих точках дифференцируемы, т. е. соответствующая им кривая не везде имеет касательную. Такие функции дифференцируются, т. е. имеют производную, но эта производная не во всех точках обладает определенным значением. Однако раз есть производная, есть и дифференциал, и раз производная не везде обладает определенным значением, то и дифференциал такой функции отнюдь не везде получает точное и определенное значение. Таким образом, сказка о дифференциале функции как о той или иной только конечной величине рушится сама собой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос и структура отзывы


Отзывы читателей о книге Хаос и структура, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x