Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
7
Превосходные, но более сложные примеры визуализации математических образов представлены в R. B. Nelsen, Proofs without Words (Mathematical Association of America, 1997).
8
Теория баланса впервые была предложена социальным психологом Фрицем Хайдером в 1946 году и с тех пор разрабатывалась и применялась теоретиками социальных сетей, политологами, антропологами, математиками и физиками. Ее исходные положения даны в F. Heider, Attitudes and cognitive organization, Journal of Psychology, Vol. 21 (1946), pp. 107–112, и F. Heider, The Psychology of Interpersonal Relations (John Wiley and Sons, 1958). Обзор по теории баланса с точки зрения социальных сетей см. S. Wasserman and K. Faust, Social Network Analysis (Cambridge University Press, 1994), chapter 6.
9
Теорема, из которой следует, что сбалансированное состояние в полностью связной сети должно быть либо в виде одной нирваны для всех друзей, либо в виде двух взаимно антагонистических группировок, впервые была доказана в D. Cartwright and F. Harary, Structural balance: A generalization of Heider’s theory, Psychological Review, Vol. 63 (1956), pp. 277–293. Очень легко читаемая версия доказательства и простое введение в математику теории баланса дано двумя моими коллегами из Корнельского университета в работе D. Easley and J. Kleinberg, Networks, Crowds, and Markets (Cambridge University Press, 2010).
10
Примеры и графические изображения альянсов до Первой мировой войны взяты из T. Antal, P. L. Krapivsky and S. Redner, Social balance on networks: The dynamics of friendship and enmity, Physica D, Vol. 224 (2006), pp. 130–136, доступной по адресу http://arxiv.org/abs/physics/0605183. Эта статья, написанная тремя физиками, распространяет теорию баланса на динамические структуры, тем самым расширяя ее за пределы ранних статических подходов. Исторические подробности европейских союзов и альянсов приведены в W. L. Langer, European Alliances and Alignments, 1871–1890, 2 ndedition (Knopf, 1956) и B. E. Schmitt, Triple Alliance and Triple Entente (Henry Holt and Company, 1934).
11
Кит Девлин написал провокационную серию очерков о природе умножения: что это такое, что в нем не так и почему определенные виды мышления более ценны и надежны в процессе умножения, чем другие. Он рассматривает умножение как масштабирование, не сводя его к процессу суммирования, и показывает, что эти два понятия (умножение как масштабирование и умножение как суммирование) существенно разнятся в реальных условиях. См. его январскую (2011 года) статью What exactly is multiplication? на http://archive.is/qCkK, а также три более ранних 2008 года: It ain’t no repeated addition (http://www.maa.org/devlin/devlin_06_08.html), It’s still not repeated addition (http://www.maa.org/devlin/devlin_0708_08.html) и Multiplication and those pesky British spellings (http://www.maa.org/devlin/devlin_09_08.html). Эти статьи активно обсуждались в среде блогеров, особенно среди учителей.
12
Американский исполнитель поп-музыки, снискавший мировую славу в 1980-х годах. Прим. ред.
13
В примере с джинсами порядок применения налогового сбора и скидки для вас не имеет значения — в обоих сценариях вы в конечном итоге платите 43,20 доллара. Но для правительства и магазина он весьма существенен! В сценарии продавщицы (при котором вы платите налог в зависимости от первоначальной цены) вы заплатите 4 доллара налога, в вашем сценарии — всего 3,20 доллара. Я не знаю, одинаков ли закон о налоге на продажи во всех штатах, но рациональнее всего взимать его на основе фактической цены в магазине. Дальнейшее обсуждение этих вопросов см. http://www.facebook.com/TeachersofMathematics/posts/166897663338316.
14
Обсуждение достоинств и недостатков закона Roth 401(k) см. публикации Commutative law of multiplication (http://thefinancebuff.com/commutative-law-of-multiplication.html) и The new Roth 401(k) versus the traditional 401(k): Which is the better route? (http://www.thesimpledollar.com/2007/06/20/the-new-roth-401k-versus-the-traditional-401k-which-is-the-better-route/).
15
Лига плюща — группа самых престижных частных колледжей и университетов на северо-востоке США, которые славятся высоким уровнем обучения и научных исследований. Название связано с тем, что по английской традиции стены университетов — членов Лиги увиты плющом. Прим. ред.
16
Эта история о Мюррее Гелл-Манне рассказывается в G. Johnson, Strange Beauty (Knopf, 1999), p. 55. По словам самого Гелл-Манна, хотя его приняли в «страшный» Массачусетский технологический институт, он «рассматривал самоубийство как единственный выход из положения, если пролетаешь мимо Лиги плюща». «Мне пришло в голову (и это интересный пример некоммутирующих операторов), что можно попробовать учебу в Массачусетском технологическом институте и убить себя позже, в то время как обратный порядок событий невозможен». Этот отрывок приведен в H. Fritzsch, Murray Gell-Mann: Selected Papers (World Scientific, 2009), p. 298.
17
Рассказ о том, как Гейзенберг и Дирак открыли роль некоммутирующих переменных в квантовой механике, см. G. Farmelo, The Strangest Man (Basic Books, 2009), pp. 85–87.
Прим. ред.: По истории квантовой механики см., например: Пономарев Л. И. Под знаком кванта. М.: ФИЗМАТЛИТ, 2005; Милантьев В. П. История возникновения квантовой механики и развитие представлений об атоме. М.: Книжный дом «ЛИБРОКОМ», 2009.
18
Математики говорят, что множество натуральных чисел замкнуто относительно операций сложения и умножения, то есть результаты этих операций, совершенные над натуральными числами, тоже будут натуральными числами. Аналогично множество всех целых чисел замкнуто относительно операций сложения, вычитания и умножения. Прим. ред.
19
Сцену, где молодой Кристи пытается мужественно ответить на вопрос «Сколько будет 25 процентов от четверти?» можно найти на сайте http://www.tcm.com/mediaroom/video/223343/My-Left-Foot-Movie-Clip-25-Percent-of-a-Quarter.html.
20
В блоге Джорджа Ваккаро (http://verizonmath.blogspot.com/) можно узнать подробности его встречи с представителями Verizon Wireless. Стенограмма разговора доступна на http://verizonmath.blogspot.com/2006/12/transcription-jt.html. Аудиозапись — на http://imgs.xkcd.com/verizon_billing.mp3.
21
Для читателей, которым все еще трудно принять, что 1 = 0,9999…, аргументом (убедившим в конце концов и меня) может быть такое рассуждение: они должны быть равны, потому что между ними нельзя вставить никакого другого десятичного числа. (В то же время, если два десятичных числа не равны, то между ними можно вставить их среднее, а также бесконечно много других десятичных чисел.)
22
Удивительные свойства иррациональных чисел обсуждаются на более высоком математическом уровне на странице Irrational Number по адресу http://mathworld.wolfram.com/IrrationalNumber.html. Взгляд, согласно которому цифры в иррациональном числе рассматриваются как случайные, представлен на http://mathworld.wolfram.com/NormalNumber.html.
23
Эзра Корнелл (англ. Ezra Cornell; 1807–1874) — американский бизнесмен, изобретатель, филантроп. Вместе с Эндрю Уайтом основал Корнелльский университет. Знаменит также тем, что был в числе учредителей и фактических руководителей всемирно известной компании Western Union, построившей первый трансконтинентальный телеграф в Соединенных Штатах. Прим. ред.
Читать дальшеИнтервал:
Закладка: