Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Тут можно читать онлайн Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-500057-008-1
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.

Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать книгу онлайн бесплатно, автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

24

Более подробную информацию о Корнелле, в том числе о его роли в Western Union, см. P. Dorf, The Builder: A Biography of Ezra Cornell (Macmillan, 1952); W. P. Marshall, Ezra Cornell (Kessinger Publishing, 2006); и http://rmc.library.cornell.edu/ezra/index.html, онлайн-выставку в честь 200-летнего юбилея Корнелла.

25

Древние системы счисления и происхождение десятичной системы обсуждаются в V. J. Katz, A History of Mathematics, 2 ndedition (Addison Wesley Longman, 1998) и в C. B. Boyer and U. C. Merzbach, A History of Mathematics, 3 rdedition (Wiley, 2011). О развитии систем счета см. C. Seife, Zero (Viking, 2000), chapter 1.

Прим. ред.: Из огромной литературы по истории математики на русском языке выделим только следующие издания, которые признаны как наиболее фундаментальные в этом разделе математики: Варден, дер. В. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Наука, 1959; Выгодский М. Я. Арифметика и алгебра в древнем мире. М.: Наука, 1967; Бурбаки Н. Очерки по истории математики. М.: КомКнига, 2007; История математики. В 3-х томах / Под ред. А. П. Юшкевича. М.: Наука, 1970–1972. Том I. С древнейших времен до начала Нового времени (1970).

26

Марк Чу-Кэрролл рассматривает некоторые специфические особенности римских чисел и римской арифметики в блоге http://scienceblogs.com/goodmath/2006/08/roman_numerals_and_arithmetic.php.

27

Увлекательная выставка вавилонской математики описывается в N. Wade, An exhibition that gets to the (square) root of Sumerian math, New York Times (November 22, 2010) на сайте http://www.nytimes.com/2010/11/23/science/23babylon.html, сопровождающее слайд-шоу см. на http://www.nytimes.com/slideshow/2010/11/18/science/20101123-babylon.html.

28

Это может быть преувеличением. Одну из гипотез о том, как число 60 можно связать с анатомией рук человека, см. в G. Ifrah, The Universal History of Numbers (Wiley, 2000), chapter 9.

29

Вообще-то от латинского «пальцы» слово «цифра» происходит в английском языке, где слово digit обозначает как цифру, так и палец. В русском языке слово «цифра» происходит от арабского ṣifr — пустой, ничего, нуль. Прим. ред.

30

Для зануд: Лия действительно на 21 месяц старше Джо.

31

Ричард Фейнман (1918–1988) — выдающийся американский ученый, основные открытия сделал в области теоретической физики. Один из создателей квантовой электродинамики. В 1943–1945 гг. входил в число разработчиков атомной бомбы в Лос-Аламосе. Прим. перев.

32

Фейнман рассказывает об остроумном методе Бете возведения в квадрат чисел до 50 в книге R. P. Feynman, Surely, You’re Joking, Mr. Feynman! стр. 193 (W. Norton and Company, 1985).

Прим. ред.: Фейнман Р. Вы, конечно, шутите, мистер Фейнман! М.: Колибри, 2008.

33

Ганс Бете (1906–2005) — американский астрофизик, лауреат Нобелевской премии по физике. В 1943–1945 гг. входил в число разработчиков атомной бомбы в Лос-Аламосе. Прим. перев.

34

Получение одинаковых результатов при повышении и понижении стоимости акций на одинаковый процент при колебании цен на фондовом рынке можно доказать математически с помощью умножения 1 + x на 1 — x или геометрически, нарисовав схему, аналогичную используемой Бете для объяснения своего метода. Если у вас есть настроение, в качестве упражнения попробуйте оба подхода.

35

«Ваш возраст, деленный на два, и плюс семь», — эта формула называется стандартом приемлемой разницы в возрасте партнеров, находящихся в романтических отношениях. Ее можно найти по ссылке http://xkcd.com/314/.

36

О поиске решений более сложных уравнений, от квадратных до уравнений пятого порядка, ярко и подробно рассказывается в книге M. Livio, The Equation That Couldn’t Be Solved (Simon and Schuster, 2005).

Прим. ред.: Книга для школьников по решению алгебраических уравнений: Самарова С.С. Решение алгебраических уравнений. М.: Резольвента, 2010.

37

Делос — остров в Эгейском море. Прим. ред.

38

Дополнительные сведения о классической проблеме удвоения куба можно найти по адресу http://www-history.mcs.st-and.ac.uk/HistTopics/Doubling_the_cube.html.

39

Чтобы больше узнать о мнимых и комплексных числах и их применении, а также об их переменчивой истории см. J. Nahin, An Imaginary Tale (Princeton University Press, 1998) и B. Mazur, Imagining Numbers (Farrar, Straus and Giroux, 2003).

Прим. ред.: Среди обширной литературы по комплексным числам укажем только одну из последних книг: Арнольд В. И. Геометрия комплексных чисел, кватернионов и спинов. М.: МЦНМО, 2002.

40

Прекрасную журналистскую работу о Джоне Хаббарде можно найти в книге J. Gleick, Chaos, р. 217 (Viking, 1987). Собственный взгляд Хаббарда на метод Ньютона отображен в разделе 2.8 книги J. Hubbard and B. B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms, 4 thedition (Matrix Editions, 2009).

Для читателей, которые хотят углубиться в математический аппарат метода Ньютона, более сложное, но все же довольно понятное объяснение дано в книге H.-O. Peitgen and P. H. Richter, The Beauty of Fractals (Springer, 1986), chapter 6; также см. статью Эдриана Двади (сотрудник Хаббарда), озаглавленную Julia sets and the Mandelbrot set, в этой же книге.

41

Хаббард не был первым математиком, поставившим вопрос о применении метода Ньютона, в комплексной плоскости. Артур Кэли, британский математик, задал его еще в 1879 году. Он также рассмотрел квадратичный и кубический полиномы и понял, что первый случай гораздо проще, чем второй. Хотя тогда он еще не мог знать о фракталах, которые были обнаружены век спустя, он прекрасно понимал, что есть риск возникновения определенных проблем, если корней окажется больше двух. В его небольшой (на одну страницу) статье Desiderata and suggestions: No.3—the Newton-Fourier imaginary problem, American Journal of Mathematics, 2(1), March 1879, p. 97, с которой можно ознакомиться на сайте http://www.jstor.org/pss/2369201, заключение звучит как сдержанное предупреждение: «Для квадратного уравнения решение легко и элегантно, но представляется, что решение кубического уравнения окажется значительно сложнее».

42

Снимки, представленные в этой главе, были рассчитаны методом Ньютона, примененного для нахождения корней многочлена z 3— 1. Его корни — три кубических корня из 1. Для этого случая в соответствии с алгоритмом Ньютона на комплексной плоскости выбирается точка z , она и переносит значение корня в новую точку, рассчитанную по формуле

z — ( z 3— 1)/(3 z 2).

Именно это значение и становится следующим значением z . Данный процесс повторяется, пока z не подходит достаточно близко к корню или, что эквивалентно, пока z 3— 1, не подойдет достаточно близко к нулю, где под «достаточно близко» понимается очень маленькое расстояние, выбранное программистом. Затем все исходные точки, которые приводят к определенному корню, окрашиваются в одинаковый цвет. Таким образом, точки красного цвета сходятся к одному корню, точки зеленого — к другому, а синего — к третьему. Снимки окончательного фрактала Ньютона были любезно предоставлены Саймоном Татемом. Дополнительные сведения о его работе вы найдете на странице Fractals derived from Newton-Raphson iteration на сайте: http://www.chiark.greenend.org.uk/~sgtatham/newton/.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир отзывы


Отзывы читателей о книге Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x