Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Прим. ред.: Прекрасную статью «Математическое искусство М. К. Эшера» см. на http://im-possible.info/russian/articles/escher_math/escher_math.html.
160
Эта библиотека в настоящий момент находится в стадии строительства. Информацию о разработке ее дизайна и макет проекта можно найти на сайте архитектурного бюро BIG (Bjarke Ingels Group), http://www.big.dk/. На сайте представлен также 41 слайд с изображением внутренней и внешней архитектуры библиотеки, обзором музея, воздействия температур и т. п. Все это необычно, поскольку проект здания построен на принципе ленты Мебиуса. Сведения об архитекторе Бьярке Ингельсе и его работе содержатся в статье G. Williams, Open source architect: Meet the maestro of ‘hedonistic sustainability, http://www.wired.co.uk/magazine/archive/2011/07/features/open-source-architect.
161
Некоторые из них описаны в книге Pickover, The Mobius Strip. Вы можете найти сотни других, произведя поиск по ключевым словам «лента Мебиуса».
162
Способ разрезания бублика таким образом показан на сайте Джорджа Гарта http://www.georgehart.com/bagel/bagel.html. Можно также посмотреть компьютерную анимацию, выполненную Биллом Джайлсом, на http://www.youtube.com/watch?v=hYXnZ8-ux80. Если хотите проследить за процессом в реальном времени, найдите видео компании UltraNurd под названием Mobius Bagel («Бублик Мебиуса») на http://www.youtube.com/watch?v=Zu5z1BCC70s. Однако, строго говоря, это не совсем бублик Мебиуса, о чем говорят многие, кто писал о работе Джорджа или пытался повторить его опыт. Поверхность, по которой растекается сливочный сыр, не является эквивалентом ленты Мебиуса, поскольку в ней два полуоборота вместо одного, в результате она имеет две стороны, а не одну. Кроме того, настоящий бублик Мебиуса, разрезанный пополам, состоит из одной части, а не из двух. Видеоролик о том, как разрезать бублик, действительно используя метод Мебиуса, см. http://www.youtube.com/watch?v=l6Vuh16r8°8.
163
Может показаться, что я говорю о геометрии на плоскости с некоторым пренебрежением, но это ошибочное впечатление. Я так не думаю, поскольку метод локальной аппроксимации криволинейной формы плоскости часто оказывался полезным упрощением во многих разделах математики и физики — от простых вычислений до теории относительности. Планиметрия — первый пример этой великой идеи.
И я не утверждаю, что буквально все древние думали, будто мир плоский. Об измерении Эратосфеном окружности и радиуса Земли см. N. Nicastro, Circumference (St. Martin’s Press, 2008). Более современный подход недавно продемонстрировал профессор Принстонского университета Роберт Вандербей во время выступления перед учениками геометрического класса средней школы, в котором учится его дочь. Возможно, вы захотите повторить его опыт. Чтобы показать, что Земля не плоская, и оценить ее диаметр, он использовал фотографию заката. Его слайды размещены по адресу http://orfe.princeton.edu/~rvdb/tex/sunset/34-39.OPN.1108twoup.pdf.
164
Превосходное введение в современную геометрию написано одним из величайших математиков ХХ века Давидом Гильбертом. Эта классическая работа, первоначально опубликованная в 1952 году, была переиздана в 1999-м, см. D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination (American Mathematical Society, 1999). Список нескольких хороших учебников и онлайн-курсов по дифференциальной геометрии приведен в «Википедии» по адресу http://en.wikipedia.org/wiki/Differential_geometry.
Прим. ред.: Книги по дифференциальной геометрии: Бляшке В. Введение в дифференциальную геометрию / 2-е изд., исправл. Ижевск: Издательский дом «Удмуртский университет». 2000; Мищенко А. С., Фоменко А. Т. Краткий курс дифференциальной геометрии и топологии. М.: ФИЗМАТЛИТ, 2004; Позняк Э. Г., Шикин Е. В. Дифференциальная геометрия: первое знакомство. М.: Изд-во МГУ, 1990; Прасолов В. В. Наглядная топология /2-е изд., доп. М.: МЦНМО, 2006.
165
Равноугольная цилиндрическая проекция, предложенная в последней трети XVI века картографом Г. Меркатором. Используется в навигации, поскольку для нее углы между меридианом и курсом (пересекающей его линией) одинаковы на сфере и изображающей ее поверхности плоской карты. Прим. перев.
166
Интерактивное видео в режиме онлайн, которое позволит найти кратчайший маршрут между двумя любыми точками на поверхности Земли, см. http://demonstrations.wolfram.com/GreatCirclesOnMercatorsChart/. (Для просмотра потребуется загрузить Mathematica Player, который в дальнейшем позволит открыть сотни других видео из всех разделов математики.)
167
Традиция пришла из средних веков, когда парикмахеры, чтобы привлечь внимание горожан к своему бизнесу, вешали на стене парикмахерской специальные знаки (что-то вроде вывески) в виде цилиндров, раскрашенных спиралями белого и красного цветов. В настоящее время в США эти знаки красят в белый, красный и синий цвета, а сам цилиндр помещается в стеклянную капсулу.
168
Фрагменты из ряда увлекательных образовательных видео по разделам математики Полтье можно найти в интернете по адресу: http://page.mi.fu-berlin.de/polthier/video/Geodesics/Scenes.html. Видео Полтье и его коллег, получившие награды на фестивале VideoMath Festival, размещены на http://page.mi.fu-berlin.de/polthier/Events/VideoMath/index.html. Для получения дополнительных сведений см. G. Glaeser and K. Polthier, A Mathematical Picture Book (Springer, 2012). Изображения, использованные в этой главе, взяты из DVD Touching Soap Films (Springer, 1995), by Andreas Arnez, Konrad Polthier, Martin Steffens, and Christian Teitzel.
169
Классический алгоритм для задач нахождения кратчайшего пути разработан Эдсгером Дейкстрой. За информацией обращайтесь по адресу http://en.wikipedia.org/wiki/Dijkstra’s_algorithm. Стивен Скиена разместил в своем блоге анимированную инструкцию алгоритма Дейкстры, см. http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html.
170
Восхитительные примеры историй в шести словах даны на страницах http://www.smithmag.net/sixwords/; http://en.wikipedia.org/wiki/Six-Word_Memoirs.
171
«Анализируй это» (англ. Analyze This!) — фильм режиссера Гарольда Рамиса (1999). Влиятельный нью-йоркский мафиози Пол Витти — на грани нервного срыва. Все гангстеры в шоке: как помочь своему чокнутому боссу? Бен Соболь — обычный психоаналитик. У него есть всего несколько дней на то, чтобы помочь «крестному отцу» справиться с депрессией. Прим. перев.
172
Анализ возник в связи с необходимостью укрепить логические основы исчисления. Уильям Данхэм прослеживает его историю на основе работ одиннадцати гениальных математиков, от Ньютона до Лебега, в книге W. Dunham, The Calculus Gallery (Princeton University Press, 2005). Эта книга содержит точные математические представления, которые будут понятны читателям уровня выпускников колледжа. См. также учебник, написанный в аналогичной манере, D. Bressoud, A Radical Approach to Real Analysis, 2 ndedition (Mathematical Association of America, 2006). Для более полного исторического обзора см. C. B. Boyer, The History of the Calculus and Its Conceptual Development (Dover, 1959).
173
Об истории ряда Гранди 1–1 + 1–1 + 1–1 +… его дальнейшем математическом статусе и его роли в математическом образовании говорится в статье «Википедии», опирающейся на тщательно отобранные источники, со ссылками по темам. Все это можно найти на странице Grandi’s series («Ряды Гранди») по адресу http://en.wikipedia.org/wiki/Grandi’s_series.
Читать дальшеИнтервал:
Закладка: