Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы
- Название:Магия чисел. Ментальные вычисления в уме и другие математические фокусы
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-5-00057-270-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы краткое содержание
Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.
Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.
Магия чисел. Ментальные вычисления в уме и другие математические фокусы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы решить следующие задачи, не забудьте использовать полученные знания о десятичном виде различных «одноцифровых» дробей. Везде, где это целесообразно, упрощайте дроби, прежде чем преобразовать их в десятичные.
1. 2/52. 4/73. 3/84. 9/125. 5/126. 6/11
7. 14/248. 13/279. 18/4810. 10/1411. 6/3212. 19/45
В последнем разделе мы узнали, как упростить задачи на деление, если числитель и знаменатель поделить на общий множитель. В завершение этой главы обсудим, как определить, является ли одно число делителем другого. Это поможет упростить задачу на деление и ускорить процесс решения многих задач на умножение, а также пригодится, когда мы доберемся до продвинутого умножения, где часто придется искать способы разложить на множители двух-, трех- или даже пятизначные числа. Умение делать это окажется весьма полезным.
Проверить, делится ли число на 2, довольно просто. Вам нужно только определить, является ли последняя цифра четной. Если это 2, 4, 6, 8 или 0, то число целиком делится на 2.
Чтобы протестировать число на делимость на 4, проверьте, делятся ли на 4 две его последние цифры. Число 57 852 кратно 4, потому что 52 = 13 х 4. Число 69 346 не кратно 4, поскольку 46 не делится на 4 без остатка. Это правило работает потому, что 4 делит 100 и, следовательно, любое число, кратное 100.
Таким образом, поскольку 57 800 и 52 делятся на 4, то 4 поделит и их сумму, то есть 57 852.
Аналогично, так как 1000 делится на 8, для проверки кратности 8 достаточно выяснить, делятся ли на 8 последние три цифры числа. Например, для 14 918 надо проверить число 918 на делимость на 8. Однако при делении 918 на 8 имеем остаток (918 ÷ 8 = 114 6/8), из чего делаем вывод, что число 14 918 на 8 не делится. Можно также заметить, что 18 (две последние цифры числа 14 918) не делится на 4, а так как 14 918 не делится на 4, оно не может делиться и на 8.
Когда дело доходит до делимости на 3, предлагаю запомнить одно простое правило: число делится на 3 тогда и только тогда, когда сумма составляющих его цифр делится на 3 (независимо от того, сколько цифр в числе). Чтобы выяснить, делится ли 57 852 на 3, просто сложите 5 + 7 + 8 + 5 + 2 = 27. Так как 27 кратно 3, то и 57 852 будет кратно 3. Столь же удивительное правило справедливо и для делимости на 9. Число делится на 9 тогда и только тогда, когда сумма составляющих его цифр кратна 9. Поэтому 57 852 кратно 9, тогда как число 31 416, сумма цифр которого равна 15, на 9 не делится. Объясняется это правило тем, что числа 1, 10, 100, 1000, 10000 и т. д. всегда на единицу больше кратного 9.
Число делится на 6 только в том случае, если оно четное и делится на 3. Так что кратность 6 легко проверить.
Установить, делится ли число на 5, еще проще. Любое число, независимо от величины, кратно 5 тогда и только тогда, когда оно заканчивается на 5 или 0.
Выяснить делимость на 11 почти так же просто, как на 3 или на 9. Число делится на 11 тогда и только тогда, когда в результате попеременного вычитания и сложения составляющих его цифр вы получите либо 0, либо кратное 11.
Например, 73 958 не делится на 11, потому что 7–3 + 9–5 + 8 = 16. Однако числа 8 492 и 73 194 кратны 11, так как 8–4 + 9–2 = 11 и 7–3 + 1–9 + 4 = 0. Это правило работает потому, что числа 1, 100, 10 000, 1 000 000 на единицу больше кратного 11, в то время как числа 10, 1000, 100 000 и т. д. на единицу меньше величины, кратной 11.
Проверка делимости на 7 несколько сложнее. Если вы прибавите (или вычтите) число, кратное 7, к проверяемому (или из проверяемого) и полученный результат будет делиться на 7, ответ положительный. Я всегда выбираю такое прибавляемое или вычитаемое кратное 7, чтобы в итоге сумма или разность заканчивалась на 0. Например, для проверки числа 5292 я вычитаю 42 (кратное 7), чтобы получить 5250.
Далее избавляюсь от 0 на конце (так как деление на десять не влияет на проверку делимости на семь), получая в итоге 525. Затем повторяю процесс, прибавляя 35 (кратное 7), что дает мне 560. Когда я удалю 0, то останусь с числом 56, которое, как мне известно, кратно 7. Таким образом, исходное число 5292 делится на 7.
Этот метод работает не только для 7, но и для любого нечетного числа, кроме оканчивающегося на 5. Например, чтобы проверить, делится ли 8792 на 13, вычитаем 4 х 13 = 52 из 8792 и получаем 8740. Опуская 0, имеем 874. Затем прибавляем 2 х 13 = 26, выходит 900. Удаление двух нулей оставляет нас с числом 9, которое, очевидно, не кратно 13. Таким образом, 8792 не делится на 13.
УПРАЖНЕНИЕ: ПРОВЕРКА НА ДЕЛИМОСТЬ
В этом упражнении будьте особенно внимательны при проверке делимости на 7 и 17. Остальное не должно представлять для вас трудностей.
Делимость на 2
1. 53 4282. 2933. 72414. 9846
Делимость на 4
5. 39326. 67 3487. 3588. 57 929
Делимость на 8
9. 59 36610. 73 48811. 24812. 6111
Делимость на 3
13. 83 67114. 94 73715. 735916. 3 267 486
Делимость на 6
17. 533418. 67 38619. 24820. 5991
Делимость на 9
21. 123422. 846923. 4 425 57524. 314 159 265
Делимость на 5
25. 47 83026. 43 76227. 56 78528. 37 210
Делимость на 11
29. 53 86730. 496931. 382832. 941 369
Делимость на 7
33. 578434. 733635. 87536. 1183
Делимость на 17
37. 69438. 62939. 827340. 13 855
Если вы в состоянии управиться с целыми числами, то арифметические действия с дробями покажутся вам почти такими же легкими. В этом разделе мы сделаем обзор основных методов сложения, вычитания, умножения, деления и сокращения обыкновенных дробей. Те, кто знаком с дробями, могут спокойно его пропустить.
Умножение обыкновенных дробей
Чтобы перемножить две обыкновенные дроби, нужно просто перемножить их числители (верхние числа), а затем знаменатели (нижние числа). Например:
2/3 х 4/5 = 8/15
1/2 х 5/9 = 5/18
Что может быть проще! Попробуйте следующие упражнения, прежде чем двигаться дальше.
УПРАЖНЕНИЕ: УМНОЖЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ
1. 3/5 х 2/7
2. 4/9 х 11/7
3. 6/7 х 3/4
4. 9/10 х 7/8
Деление обыкновенных дробей
Деление дробей столь же легкое, как и умножение. Однако оно требует одного дополнительного действия. Сначала переверните вторую дробь с ног на голову (это называется обратная дробь), а затем умножайте. Например, обратная дробь для 4/5 будет 5/4. Следовательно,
2/3 ÷ 4/5 = 2/3 х 5/4 = 10/12
1/2 ÷ 5/9 = 1/2 х 9/5 = 9/10
УПРАЖНЕНИЕ: ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ
Теперь ваша очередь. Поделите эти дроби.
Читать дальшеИнтервал:
Закладка: