Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Тут можно читать онлайн Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Ментальные вычисления в уме и другие математические фокусы
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-00057-270-2
  • Рейтинг:
    4.09/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы краткое содержание

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - описание и краткое содержание, автор Майкл Шермер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.

Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Майкл Шермер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Обратите внимание на последовательность действий Путем разложения 288 на 9 х 8 - фото 257

Обратите внимание на последовательность действий. Путем разложения 288 на 9 х 8 х 4 мы упрощаем задачу «3 на 3» (829 х 288) до «3 на 1 на 1 на 1». Далее она превращается в «4 на 1 на 1» (7461 х 8 х 4) и, наконец, в «5 на 1» для получения итогового ответа 238 752. Прелесть данного решения состоит в отсутствии каких-либо действий на сложение и в том, что ничего не нужно хранить в уме. Добравшись до задачи типа «5 на 1», мы оказались в одном шаге от окончательного ответа.

Задачу типа «5 на 1» можно решить в два действия, если представить 59 688 как 59 000 + 688, а затем сложить результаты задач «2 на 1» (59 000 х 4) и «3 на 1» (688 х 4), как показано ниже.

Если оба трехзначных числа можно разложить на 2 на 1 то задача 3 на 3 - фото 258

Если оба трехзначных числа можно разложить на «2 на 1», то задача «3 на 3» упрощается до «2 на 2 на 1 на 1», как в следующем примере.

Как обычно лучше сразу избавиться от трудного элемента задачи то есть от - фото 259

Как обычно, лучше сразу избавиться от трудного элемента задачи, то есть от умножения типа «2 на 2». Как только вы это сделаете, задача будет сведена к «4 на 1», а затем к «5 на 1».

Очень часто бывает так, что раскладывается только один из сомножителей. В таком случае задача сводится к умножению типа «3 на 2 на 1», как в этом примере:

Магия чисел Ментальные вычисления в уме и другие математические фокусы - изображение 260

Следующая задача «3 на 3» в действительности просто замаскированная задача типа «3 на 2».

Магия чисел Ментальные вычисления в уме и другие математические фокусы - изображение 261

Путем удвоения 435 и уменьшения 624 наполовину получаем эквивалентную задачу.

Метод совместной близости Вы готовы к чемунибудь попроще Следующий прием - фото 262

Метод совместной близости

Вы готовы к чему-нибудь попроще? Следующий прием, который был представлен еще в главе 0, основан на такой алгебраической формуле:

(z + a)(z + b) = z

2 + za + zb + ab

Переписываем ее:

(z + a)(z + b) = z(z + a + b) + ab

Эта формула справедлива при любых значениях z , a и b .

Мы будем пользоваться ею всякий раз, когда трехзначные числа, которые нужно перемножить ( z х a и z х b ), находятся близко к легкому числу z (типичный случай, когда число z имеет большое количество нулей). Например, умножим

картинка 263

Будем рассматривать эту задачу как (100 + 7) х (100 + 11).

Задав z = 100, a = 7, b = 11, наша формула даст:

100 (100 + 7 + 11) + 7 х 11 = 100 х 118 + 77 = 11 877.

Я схематически изобразил решение так:

Числа в скобках равны разностям между исходными числами и нашим подходящим - фото 264

Числа в скобках равны разностям между исходными числами и нашим подходящим «базовым числом» (здесь z = 100).

Число 118 получено путем сложения 107 + 11 или 111 + 7. По законам алгебры, эти суммы эквивалентны, так как (z + a) + b = (z + b) + a.

На этот раз без лишних слов решим еще один «ускоренный» пример:

Метод работает великолепно Теперь немного повысим ставки и возьмем большее - фото 265

Метод работает великолепно!

Теперь немного повысим ставки и возьмем большее базовое число.

Хотя данный метод как правило используется для умножения трехзначных чисел - фото 266

Хотя данный метод, как правило, используется для умножения трехзначных чисел, его также можно применить для задач типа «2 на 2».

Здесь базовое число 70 умножается на 81 78 3 В таких задачах даже действие - фото 267

Здесь базовое число 70 умножается на 81 (78 + 3). В таких задачах даже действие на сложение обычно очень простое.

Этот метод также применим, когда оба числа меньше базового. Как, например, в следующей задаче, где оба числа меньше 400.

Число 383 получено путем вычитания 396 13 или 387 4 Данный метод также - фото 268

Число 383 получено путем вычитания 396 — 13 или 387 — 4.

Данный метод также можно использовать и для задач типа «2 на 2», таких как следующие.

В следующем примере базовое число по величине находится между перемножаемыми - фото 269

В следующем примере базовое число по величине находится между перемножаемыми числами.

Число 409 получено в ходе операций 396 13 или 413 4 Обратите внимание - фото 270

Число 409 получено в ходе операций 396 + 13 или 413 — 4.

Обратите внимание, что, поскольку числа –4 и 13 имеют противоположные знаки, из результата умножения необходимо вычесть 52.

Поднимем ставки еще выше, до уровня, где второе действие требует умножения типа «2 на 2».

Здесь обратите внимание на то что первое действие в задаче 600 х 658 - фото 271

Здесь обратите внимание на то, что первое действие в задаче (600 х 658) является хорошей оценкой ответа. Но наш метод позволяет перейти от оценки к точному ответу.

Обратите также внимание что во всех примерах сумма чисел которые мы - фото 272

Обратите также внимание, что во всех примерах сумма чисел, которые мы перемножаем в первом действии, такая же, как и исходные числа. Например, в задаче выше 900 + 829 = 1729, как и 876 + 853 = 1729. Это следует из равенства:

z + [(z + a) + b] = (z + a) + (z + b)

Поэтому, чтобы получить число, которое надо умножить на 900 (оно будет в диапазоне «800 плюс»), нужно всего лишь взглянуть на последние две цифры суммы 76 + 53 = 129, чтобы вышло 829.

В следующем примере сложение 827 + 761 = 1588 подсказывает, что нужно перемножить 800 х 788, а затем из полученного результата вычесть произведение 27 х 39.

Этот метод настолько эффективен что если задача типа 3 на 3 над которой вы - фото 273

Этот метод настолько эффективен, что если задача типа «3 на 3», над которой вы думаете в настоящий момент, состоит из чисел, далеких друг от друга, то иногда можно видоизменить ее путем деления одного и умножения другого числа на одинаковое число (тем самым сблизив сомножители по величине). Например, задачу 672 х 157 можно решить следующим образом.

Когда перемножаемые числа одинаковы метод совместной близости генерирует такие - фото 274

Когда перемножаемые числа одинаковы, метод совместной близости генерирует такие же вычисления, как и в традиционном методе возведения в квадрат.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Майкл Шермер читать все книги автора по порядку

Майкл Шермер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Ментальные вычисления в уме и другие математические фокусы отзывы


Отзывы читателей о книге Магия чисел. Ментальные вычисления в уме и другие математические фокусы, автор: Майкл Шермер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x