Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Тут можно читать онлайн Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Ментальные вычисления в уме и другие математические фокусы
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-00057-270-2
  • Рейтинг:
    4.09/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы краткое содержание

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - описание и краткое содержание, автор Майкл Шермер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.

Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Майкл Шермер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Метод сложения Когда ни один из предыдущих методов не работает я ищу - фото 275

Метод сложения

Когда ни один из предыдущих методов не работает, я ищу возможность использовать метод сложения, в особенности если первые две цифры одного из трехзначных чисел просты в разложении. Например, в нижеприведенном примере 64 (первые две цифры числа 641) раскладывается как 8 х 8, поэтому я его решаю следующим образом.

По тому же принципу в примере ниже 42 из числа 427 раскладывается как 6 х 7 - фото 276

По тому же принципу в примере ниже 42 из числа 427 раскладывается как 6 х 7, поэтому можно использовать метод сложения, представив 427 в виде 420 + 7.

Часто я разбиваю последнюю задачу на сложение на два этапа как показано ниже - фото 277

Часто я разбиваю последнюю задачу на сложение на два этапа, как показано ниже.

Поскольку задачи решаемые методом сложения требуют определенных усилий - фото 278

Поскольку задачи, решаемые методом сложения, требуют определенных усилий, обычно я ищу другой способ, который приведет к простым вычислениям в конце процесса решения.

Например, задачу, показанную выше, можно решить с помощью разложения. Вот какие действия я бы выполнил:

В самых простых задачах решаемых методом сложения одно из чисел содержит 0 в - фото 279

В самых простых задачах, решаемых методом сложения, одно из чисел содержит 0 в середине числа, как показано ниже.

Такие задачи как правило самые легкие из тех которые можно решить - фото 280

Такие задачи, как правило, самые легкие из тех, которые можно решить аналогичным способом. Поэтому стоит приглядеться к задаче типа «3 на 3», чтобы определить возможность ее преобразования в задачу с нулями. Это окупается.

Например, в задачу 732 х 308 можно преобразовать следующие «безнулевые» примеры.

Мы уже упоминали что другой способ решения данной задачи сводится к выполнению - фото 281

Мы уже упоминали, что другой способ решения данной задачи сводится к выполнению операций 308 х 366 х 2 и использованию преимущества близости чисел 308 и 366.

Щелкаем еще один «крепкий орешек»:

Метод вычитания Метод вычитания это орудие которое я время от времени - фото 282 Метод вычитания Метод вычитания это орудие которое я время от времени - фото 283

Метод вычитания

Метод вычитания — это орудие, которое я время от времени применяю, когда одно из трехзначных чисел можно округлить до простого трехзначного числа с нулем на конце, как в следующем примере:

Подобным образом решаем такую задачу Метод когда все остальное не работает - фото 284

Подобным образом решаем такую задачу:

Метод когда все остальное не работает Когда все остальное не срабатывает я - фото 285

Метод «когда все остальное не работает»

Когда все остальное не срабатывает, я применяю один очень надежный метод. При его использовании задача на умножение типа «3 на 3» разбивается на 3 части: задача типа «3 на 1», типа «2 на 1» и типа «2 на 2». По мере решения этих задач их ответы суммируются. Такие задачи всегда сложные, особенно если нельзя видеть исходные числа. Во время выступлений с задачами на умножение типа «3 на 3» и «5 на 5» у меня всегда под рукой записанные условия, но все расчеты я произвожу в уме.

Вот пример:

На практике вычисления выполняются так как показано ниже Иногда я использую - фото 286

На практике вычисления выполняются так, как показано ниже. Иногда я использую фонетический код для хранения в памяти тысяч (здесь 447 = our rug ) и сотен (здесь 1) — на пальцах.

Решим еще один пример но на этот раз я разобью на части первое число Обычно - фото 287

Решим еще один пример, но на этот раз я разобью на части первое число. (Обычно я так поступаю с бóльшим из чисел, так решить задачу на сложение становится легче.)

Эти задачи встроены в примеры 5 на 5 которые находятся в следующем разделе - фото 288 Эти задачи встроены в примеры 5 на 5 которые находятся в следующем разделе - фото 289

Эти задачи встроены в примеры «5 на 5», которые находятся в следующем разделе.

УМНОЖЕНИЕ 5 НА 5 Самая большая задача которую мы попытаемся решить в уме - фото 290
УМНОЖЕНИЕ « 5 НА 5 »

Самая большая задача, которую мы попытаемся решить в уме, состоит из двух пятизначных чисел. Для выполнения умножения типа «5 на 5» вам необходимо в совершенстве овладеть навыком решения задач типа «2 на 2», «2 на 3» и «3 на 3» (а также уметь применять фонетический код). Решение задачи «5 на 5» — это просто вопрос сведения воедино всех типов задач, освоенных вами ранее. Как и при возведении в квадрат пятизначных чисел, вы будете использовать распределительный закон для разделения чисел на составные части. Например:

Основываясь на этом разделении данную задачу можно разложить на четыре более - фото 291

Основываясь на этом разделении, данную задачу можно разложить на четыре более простые задачи на умножение в стиле «крест-накрест», что я покажу ниже, как задачу типа «2 на 2», две задачи типа «3 на 2» и одну типа «3 на 3».

Далее суммируются решения всех этих задач. Вот как это выглядит:

Как и при возведении пятизначных чисел в квадрат я начинаю с середины берясь - фото 292

Как и при возведении пятизначных чисел в квадрат, я начинаю с середины, берясь за задачу «3 на 2» (как самую трудную):

Запомнив число 33 228 с помощью мнемоники Mom no knife далее переключаюсь на - фото 293

Запомнив число 33 228 с помощью мнемоники Mom, no knife , далее переключаюсь на вторую задачу типа «3 на 2».

2. 27 х 196 = 27 х (200 — 4) = 5400 — 108 = 5292.

И прибавляю этот результат к числу, которое хранится в памяти.

Получаем новую сумму и сохраняем ее в уме как Movie lines 38 миллионов 520 - фото 294

Получаем новую сумму и сохраняем ее в уме как:

Movie lines (38 миллионов, 520 тысяч)

Запомнив этот мнемонический код, решаем задачу «2 на 2».

4. 52 х 27 = 52 х 9 х 3 = 1 404.

На данном этапе уже можно дать частичный ответ. Поскольку задача «2 на 2» — это перемножение миллионов, то 1 404 означает 1 миллиард 404 миллиона. Так как 404 миллиона не подразумевают переноса единицы в разряд миллиардов, то можно спокойно произнести: «Один миллиард…».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Майкл Шермер читать все книги автора по порядку

Майкл Шермер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Ментальные вычисления в уме и другие математические фокусы отзывы


Отзывы читателей о книге Магия чисел. Ментальные вычисления в уме и другие математические фокусы, автор: Майкл Шермер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x