Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография

Тут можно читать онлайн Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство ООО «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография
  • Автор:
  • Жанр:
  • Издательство:
    ООО «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0639-0 (т. 2)
  • Рейтинг:
    4.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография краткое содержание

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография - описание и краткое содержание, автор Жуан Гомес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.

Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.

Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография - читать онлайн бесплатно полную версию (весь текст целиком)

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография - читать книгу онлайн бесплатно, автор Жуан Гомес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3. Если окончательная сумма кратна 10 (то есть ее значение равно нулю по модулю 10), номер карты является действительным. Заметим, что именно последняя контрольная цифра делает общую сумму кратной 10.

* * *

DINER’S CLUB

Одной из первых кредитных карт, получивших широкое признание, была карта Diner's Club. Автором идеи был американец Фрэнк Макнамара. В 1950 г. ему удалось убедить различные рестораны принимать оплату безналично с помощью персональных гарантированных кредитных карт, которые Макнамара распространил среди своих лучших клиентов. Наиболее часто в первые десятилетия кредитными картами расплачивались за обеды американские коммивояжеры, будучи в дороге.

* * *

Например, пусть карта имеет следующий номер:

1234 5678 9012 3452

По алгоритму Луна имеем:

1∙2 = 2

3∙2 = 6

5∙2 = 10 => 1 + 0 = 1

7∙2=14 => 1 + 4 = 5 (или 14-9 = 5)

9∙2 = 18 => 1 + 8 = 9

1∙2 = 2

3∙2 = 6

5∙2 = 10 => 1 + 0 = 1

Далее найдем сумму результатов и цифр на четных позициях:

2 + 6 + 1 + 5 + 9 + 2 + 6 + 1 = 32

2 + 4 + 6 + 8 + 0 + 2 + 4 + 2 = 28

32 + 28 = 60

Результат равен 60, это число кратно 10. Поэтому номер карты является действительным.

Алгоритм Луна можно применить другим способом: номер карты ABCD EFGH IJKL MNOP является правильным, если удвоенная сумма цифр на нечетных позициях и сумма цифр на четных позициях плюс количество цифр на нечетных позициях, которые больше, чем 4, кратно 10. Это правило записывается так:

2 (A + C + E + G + 1 + К + М + О) + (B + D + F + H + J + L + N + P) + (количество цифр на нечетных позициях, которые больше, чем 4) = 0 (mod 10).

Применим это правило к предыдущему примеру:

1234 5678 9012 3452

2 (1 + 3 + 5 + 7 + 9 + 1 + 3 + 5) + (2 + 4 + 6 + 8 + 0 + 2 + 4 + 2) + (4) = 100 0 (mod 10).

Снова мы убедились, что номер кредитной карты является действительным, и показали, что на первый взгляд случайные номера карт соответствуют строгому математическому стандарту.

* * *

ПРИМЕР РАСЧЕТА КОНТРОЛЬНОЙ ЦИФРЫ КРЕДИТНОЙ КАРТЫ В EXCEL

Номер кредитной карты состоит из 15 цифр плюс контрольная цифра. Цифры сгруппированы в четыре группы по четыре цифры. Контрольная цифра (КЦ) рассчитывается следующим образом.

Можно ли восстановить цифру отсутствующую в номере карты Да если мы - фото 93

* * *

Можно ли восстановить цифру, отсутствующую в номере карты? Да, если мы имеем дело с действительной кредитной картой. Найдем, например, цифру X в номере 4539 4512 03X8 7356.

Начнем с умножения на 2 цифр на нечетных позициях (4–3—4—1–0—X—7–5), сразу преобразуя результат к одной цифре.

4∙2 = 8

3∙2 = 6

4∙2 = 8

1∙2 = 2

0∙2 = 0

X∙2 = 2Х

7∙2 = 14, 14 — 9 = 5

5∙2 = 10, 10 — 9 = 1.

Складывая цифры, стоящие на четных позициях, и новые цифры на нечетных, получим:

30 + 41+ 2Х = 71 + 2Х.

Мы знаем, что число (71 + 2Х) должно быть кратно 10.

Если значение X меньше или равно 4, то для таких X (71 + 2Х) никогда не будет кратно 10.

Если же значение X больше 4, то кратно 10 должно быть выражение (71 + 2Х + 1), так как X стоит на нечетной позиции. Видим, что выражение (72 + 2Х) кратно 10 только при X = 9.

Следовательно, мы нашли потерянную цифру 9, и полный номер кредитной карты: 4539451203987356.

Штрихкоды

Первая система штрихкодов была запатентована 7 октября 1952 г. американцами Норманом Вудландом и Бернардом Сильвером. Первые версии штрихкодов отличались от сегодняшних. Вместо привычных нам линий Вудланд и Сильвер придумали концентрические круги. Впервые штрихкоды начали официально использоваться в 1974 г. в магазине города Трой, штат Огайо.

Современные штрихкоды представляют собой последовательность черных полос (которые кодируются как 1 в двоичной системе) и пробелов между ними (которые кодируются как 0). Штрихкоды используются для идентификации физических объектов. Штрихкоды, как правило, печатаются на этикетках и считываются оптическими устройствами. Это устройства, похожие на сканер, которые измеряют отраженный свет и преобразуют темные и светлые области в буквенно-цифровой код, который затем посылается на компьютер. Существует множество стандартов для штрихкодов:

Толщина штрихов и пробелов в штрихкоде соответствует двоичным цифрам Code - фото 94

Толщина штрихов и пробелов в штрихкоде соответствует двоичным цифрам.

Code 128, Code 39, Codabar, EAN (этот стандарт появился в 1976 г. в двух версиях, состоящих из 8 и 13 цифр соответственно) и UPC (Universal Product Code — универсальный код товара, используемый в основном в США и доступный также в двух версиях из 12 и 8 цифр соответственно). Наиболее распространенной является 13-значная версия EAN. Несмотря на разнообразие стандартов, штрихкоды позволяют идентифицировать любой продукт в любой части мира быстро и без существенных ошибок.

Патент системы Вудландаи Сильверас концентрическими кругами предшественниками - фото 95

Патент системы Вудландаи Сильверас концентрическими кругами, предшественниками современных штрихкодов.

* * *

ПРОГРАММА В EXCEL ДЛЯ РАСЧЕТА КОНТРОЛЬНОЙ ЦИФРЫ КОДА EAN-13

Штрихкод стандарта EAN-13 — это номер из 12 цифр плюс тринадцатая цифра, называемая контрольной цифрой (КЦ). 13 цифр составляют четыре группы:

Стандарт штрихкода EAN13 Стандарт EAN в момент создания в 1976 г - фото 96 Стандарт штрихкода EAN13 Стандарт EAN в момент создания в 1976 г - фото 97 Стандарт штрихкода EAN13 Стандарт EAN в момент создания в 1976 г - фото 98

* * *

Стандарт штрихкода EAN-13

Стандарт EAN в момент создания в 1976 г. являлся аббревиатурой ( European Article Number — европейский номер товара), а сейчас известен как Международный номер товара. Это наиболее устоявшийся стандарт штрихкодов, используемый во всем мире. Штрихкоды EAN обычно состоят из 13 цифр, представленных черными полосами и пробелами, вместе образующими двоичный код, который легко читать. EAN-13 изображает эти 13 цифр с помощью 30 черных и белых полос. Цифры делятся на три группы: первая, состоящая из двух или трех цифр, обозначает код страны; вторая, состоящая из 9 или 10 цифр (в зависимости от длины кода страны), указывает компанию и продукт, и третья, состоящая из единственной цифры, выступает в качестве контрольного кода. Для штрихкода ABCDEFGHIJKLM эти группы выглядят так:

Первые три цифры (АВС) обозначают код страны, производящей товар. Для России этот код может быть от 460 до 469. Для некоторых стран этот код может быть двузначным; тогда третья цифра входит в следующую группу.

Следующие шесть цифр (DEFGHI) обозначают компанию, производящую продукт. В этой группе может быть 4–6 цифр.

Остальные три цифры (JKL) означают код продукта, который был выбран компанией. В этой группе может быть 3–5 цифр.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жуан Гомес читать все книги автора по порядку

Жуан Гомес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография отзывы


Отзывы читателей о книге Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография, автор: Жуан Гомес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x