Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы
- Название:Том. 22. Сон разума. Математическая логика и ее парадоксы
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0717-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы краткое содержание
На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.
Том. 22. Сон разума. Математическая логика и ее парадоксы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Следовательно, при формализации арифметики все эти высказывания в рамках самой арифметики теряют смысл.
Но какое отношение все это имеет к парадоксам? Ведь целью программы Гильберта было избавить от них математику. Как мы отмечали в предыдущей главе, многие парадоксы связаны с самоотносимостью, которая вполне имеет право на существование в естественных языках, но нет никаких причин для того, чтобы она сохранялась в искусственных языках формальных систем. Когда мы озвучиваем парадокс Рассела на русском языке, нам кажется вполне логичным, что существует два класса множеств: одни принадлежат сами себе, другие — нет. Однако в формальной системе отношение принадлежности, примененное к двум переменным одного и того же типа, нарушает правила грамматики языка. Еще более интересным является парадокс лжеца: «эта фраза ложна». Чтобы эту фразу можно было рассматривать всерьез, формальная система должна не только допускать самоотносимость, но и содержать свойство «быть истинным», которое можно будет выразить средствами самого языка, а не только метаязыка. Гильберт ожидал, что эти две ситуации никогда не произойдут одновременно, если формализация арифметики будет проведена должным образом.
Однако одних лишь ожиданий было недостаточно, и теперь важнейшим становился второй этап программы Гильберта, в котором предлагалось положить конец кризису в основах математики, метаматематически доказав непротиворечивость формализованной арифметики. Только так математики будущего могли быть абсолютно уверенными в том, что больше никогда не столкнутся с противоречиями.
В этом метаматематическом доказательстве допускались не все методы: можно было использовать лишь два самых строгих, которые Гильберт назвал немецким словом finit , не слишком вдаваясь в объяснения, и которые позднее получили название финитных. Финитные методы должны были устранить все рассуждения, в которых можно было усомниться. Так, не допускались доказательства от противного, хотя этот метод использовал еще Евклид для доказательства того, что существует бесконечное множество простых чисел, а квадратный корень из двух нельзя представить в виде отношения двух натуральных чисел. Первый шаг доказательства от противного заключается в том, что мы отрицаем исходное высказывание, которое хотим доказать. Если, например, мы хотим доказать, что существует бесконечное множество простых чисел, то исходная гипотеза будет предполагать, что множество простых чисел является конечным. Затем на основе этой предпосылки нужно произвести корректные логические умозаключения, пока мы не получим абсурдное утверждение, которое будет гласить, например, что теорема арифметики, доказанная независимо от рассматриваемого утверждения, не выполняется. Все промежуточные рассуждения корректны, следовательно, единственным объяснением того, что мы пришли к абсурдному выводу, является ложность исходной гипотезы. Таким образом исходное утверждение оказывается доказанным. Часто, когда нам нужно доказать существование некоторого математического объекта, например решения некоторого уравнения, легче не найти его, а показать, что его отсутствие ведет к абсурдному заключению. Это же может произойти и в метаматематике: возможно, мы не сможем подтвердить истинность утверждения вида «формула Р доказуема», найдя явное доказательство этой формулы, однако можем предположить, что такого доказательства не существует, и в результате прийти к противоречию. Однако Гильберт не был достаточно уверен в этих методах, поэтому предпочел отказаться от них.
* * *
ПУАНКАРЕ ПРОТИВ ГИЛЬБЕРТА
Анри Пуанкаре(1854–1912) , которого некоторые историки называют «последним универсальным математиком», испытывал неприязнь к тем, кто хотел свести математику к множеству формальных отношений между символами. Когда в 1899 году были опубликованы «Основания геометрии» Гильберта, Пуанкаре написал длинную рецензию, в которой критиковал автора за стремление «заставить математику функционировать подобно механическому пианино». Несколько лет спустя, когда Гильберт по-прежнему не вполне четко представлял себе различия между языком и метаязыком, он попытался доказать непротиворечивость арифметики, применив принцип индукции, то есть пятую аксиому Пеано. Пуанкаре обратил на это внимание, указав, что Гильберт попал в порочный круг: он пытался доказать непротиворечивость арифметики с помощью важнейшей аксиомы самой арифметики. И хотя Гильберт утверждал, что использовал не индукцию, а метаиндукцию, однако прав был все же Пуанкаре. И Гильберт в конце концов согласился с ним, вняв доводам своего ученика Германа Вейля(1885–1955).
Анри Пуанкаре.
* * *
Давид Гильберт был не единственным, кто отвергал неконструктивные методы. Одновременно с логицизмом и формализмом развивалась еще одна концепция, призванная разрешить парадоксы теории множеств, в которой предполагалось полно стью исключить использование бесконечности. Для интуиционистов все математические объекты были продуктами человеческого разума, следовательно, они могли существовать только в том случае, если их можно было построить. Последователи этого направления различали потенциальную бесконечность, соответствующую множествам, которые можно неограниченно расширять, и актуальную бесконечность, характерную для законченных сущностей. Интуиционисты признавали, что натуральных чисел потенциально бесконечно много, так как к любому конечному множеству вида {0, 1, 2, …, n } можно добавить новые числа, однако нельзя говорить обо всех натуральных числах одновременно. Они также не признавали закон исключенного третьего, согласно которому для любого высказывания истинным обязательно является либо оно само, либо его отрицание. Отвергнув этот закон, сторонники интуиционизма были вынуждены также отвергнуть все математические теоремы, в доказательстве которых он использовался. Сам основоположник интуиционизма, датский математик Лёйтзен Эгберт Ян Брауэр(1881–1966) , был вынужден отвергнуть множество ранее полученных им самим результатов, в которых использовался закон исключенного третьего.
Интуиционисты также хотели избавиться от аксиомы выбора, предложенной Эрнстом Цермело для теории множеств. Согласно этой аксиоме, для данной совокупности множеств, конечной или бесконечной, можно выбрать по одному элементу из каждого множества и таким образом определить новое множество. Тем, кто не признавал существование актуальной бесконечности, вряд ли понравился бы подобный способ выбора элементов, который был сродни магии, не подчиняющийся никакому четкому правилу.
Читать дальшеИнтервал:
Закладка: