Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы
- Название:Том. 22. Сон разума. Математическая логика и ее парадоксы
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0717-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы краткое содержание
На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.
Том. 22. Сон разума. Математическая логика и ее парадоксы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В ряде статей, опубликованных с 1904 по 1927 год, Давид Гильберт постепенно уточнял свою стратегию замены всех математических доказательств доказательствами, выполненными с помощью финитных методов. Кульминацией его программы должно было стать максимально строгое и четкое доказательство непротиворечивости арифметики. Однако глава Гёттингенской математической школы не мог и предположить, что некий австрийский юноша, который начал изучать в Венском университете физику, а затем и математику, попытается дополнить формалистскую программу и обнаружит, что мечте Гильберта не суждено сбыться. И более того, соберется доказать это финитными методами!
Глава 4
Теоремы Гёделя
«Когда возникнет противоречие, необходимости в споре между двумя философами будет не более, чем между двумя математиками. Им будет достаточно взять перья и абак и сказать друг другу: произведем вычисления».
Готфрид Вильгельм Лейбниц
Улицы Кёнигсберга видели многое. В этом городе семь мостов, и жители не раз задавались вопросом: можно ли пройти по всем мостам ровно один раз и при этом вернуться в исходную точку? Этого не мог сделать никто, но и доказать, что это невозможно, также не удавалось, пока в 1735 году швейцарский математик Леонард Эйлер не создал теорию графов и не дал отрицательный ответ на этот вопрос.
Сорок лет спустя Иммануил Кант гулял по тем же мостам, пытаясь определить пределы чистого разума. Давид Гильберт также родился возле Кёнигсберга, и у общества сторонников эмпирической философии было достаточно причин, чтобы совместно с Венским кружком именно в этом городе провести конференцию с 5 по 7 сентября 1930 года.

Схема решения задачи о кёнигсбергских мостах, принадлежащего Леонарду Эйлеру.
Целью конференции было определить, в какой степени в первые годы XX века удалось справиться с кризисом, вызванным парадоксом Рассела. Докладчиками на пленарном заседании стали те, кто внес наибольший вклад в развитие трех направлений, призванных разрешить кризис: логицизма, сторонники которого считали, что всю математику можно свести к логике; формализма, успехи которого заключались в проведении различий между языком и метаязыком; и интуицизма, в рамках которого предпринималась попытка исключить бесконечность из математики. Также в программу входили доклады участников, желавших представить свои последние открытия, и непринужденные беседы в городских кафе, которые, хотя и не могли сравниться с венскими, но тоже были весьма уютными.
Австрийский логик Курт Гёдель был приглашен выступить с тезисами своей докторской диссертации, открывавшей путь к математике, которой подвластно всё. Однако за то время, что прошло с момента защиты диссертации и до начала Кёнигсбергской конференции, Гёдель в своих исследованиях пришел к выводу, что мечте логиков его поколения не суждено сбыться. И хотя он не сказал об этом в своем выступлении, по окончании круглого стола, которым завершалась программа следующего дня конференции, он заявил, что располагает примерами истинных высказываний, которые нельзя доказать исходя из аксиом. Гёдель был подобен главному герою истории, который в финале произведения нашел разгадку с помощью ключа, упомянутого на первых страницах. Его слова застали собравшихся врасплох, поэтому практически не вызвали обсуждения и даже не были зафиксированы в протоколе.

Фотография Кёнигсбергского университета, известного в народе как Альбертина. Около 1900 года.
* * *
ДИАЛОГ ИЗ ФИЛЬМА «УБИЙСТВА В ОКСФОРДЕ»
(РЕЖИССЕР АЛЕКС ДЕ ЛА ИГЛЕСИА , АВТОР СЦЕНАРИЯ ХОРХЕ ГЕРРИКАЭЧЕВАРРИЯ , 2008)
Шелдон: О, я забыл, что говорю с защитником универсальной логики. Вы и полиция верите, что истину можно доказать. Исходя из неких аксиом с помощью корректных рассуждений можно прийти к верному выводу, не так ли?
Мартин: Это верно, как верно и то, что сегодня среда.
Шелдон: А что если я скажу «Все британцы лжецы»? Эта фраза будет истинной, ложной или ее нельзя будет доказать?
Мартин: Разумеется, существуют математические высказывания, которые нельзя доказать или опровергнуть исходя из аксиом. Это неразрешимые высказывания.
Шелдон: Именно. Теорема Гёделя о неполноте. Даже в мире чистой математики не все можно доказать.
Мартин: Да, я это знаю, но в нашем случае это не так.
Шелдон: Известно ли вам, что истинное и доказуемое разделяет пропасть, бездна? Мы никогда не узнаем, известны ли нам все данные о каком-либо явлении, при этом любая новая информация может изменить все.

* * *
И все же комментарий скромного юноши в круглых очках мог изменить направление дальнейшего развития всей логики, и это не ускользнуло от внимания некоторых присутствующих. Среди них был Джон фон Нейман, который, благодаря своей легендарной быстроте ума мгновенно понял, что имел в виду Гедель, и попросил его по окончании конференции изложить свои соображения подробнее. Фон Нейман учился с Гильбертом в Гёттингене и даже опубликовал несколько статей под его руководством, однако вскоре он начал сомневаться, что с помощью финитных методов, предложенных формалистами, можно доказать непротиворечивость математики. В юности фон Нейман добился некоторых успехов в разрешении этой проблемы и продолжал работать над ней. Как-то ночью ему приснилось решение, но, попытавшись его записать, математик увидел ошибку в рассуждениях и в итоге решил заняться другими вопросами.

Помимо открытий в области логики, Джон фон Неймансовершил важный вклад в квантовую механику.
Прибыв в Кёнигсберг в качестве приглашенной звезды, Джон фон Нейман вскоре понял, что его затмил актер второго плана, рассказавший о том, что именно могло присниться фон Нейману. Вернувшись домой, давний коллега Гильберта обнаружил, что если рассуждения австрийского математика верны, то непротиворечивость арифметики нельзя доказать в рамках самой арифметики. Фон Нейман сообщил об этом Гёделю 20 ноября 1930 года, всего через три дня после того, как Гёдель отправил в журнал Monatshefte fur Mathematik und Physik рукопись статьи «О формально неразрешимых предложениях Principia Mathematica и родственных систем I » с аналогичным выводом. Фон Нейман проникся уважением к своему коллеге, и когда весной 1931 года статья была опубликована, он прервал курс лекций в Берлине, чтобы объяснить важность открытия Гёделя, а 20 лет спустя вспоминал этот момент как «веху, видимую издалека, во времени и пространстве».
Читать дальшеИнтервал:
Закладка: