Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Тут можно читать онлайн Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том. 22. Сон разума. Математическая логика и ее парадоксы
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0717-5
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы краткое содержание

Том. 22. Сон разума. Математическая логика и ее парадоксы - описание и краткое содержание, автор Хавьер Фресан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.

Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы - читать онлайн бесплатно полную версию (весь текст целиком)

Том. 22. Сон разума. Математическая логика и ее парадоксы - читать книгу онлайн бесплатно, автор Хавьер Фресан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2. Если число N соответствует некоторой формуле, то какой именно.

* * *

ГЁДЕЛЬ В ЛИТЕРАТУРЕ

В романе «Новые признания» (The new confessions) Уильяма Бойда главный герой снимает шедевр немого кино, однако его премьера остается незамеченной, так как в то же самое время появляются первые звуковые короткометражные фильмы. Лишь Курт Гёдель, который мимолетно появляется на страницах романа, признает талант режиссера.

В романе мексиканского писателя Хорхе Вольпи «В поисках Клингзора», опубликованном на десять лет позже, подруга главного героя, физика по имени Фрэнсис Бэкон, врывается на семинар Гёделя в Институте перспективных исследований и начинает кричать на него, обвиняя в неверности. Когда действие переносится в последние ряды аудитории, «профессор Гёдель объявляет, что не может продолжать занятия, и безудержно заливается слезами». Главным его конфликтом, объясняет автор устами фон Неймана, были не формально неразрешимые предложения, а «терзания от любви к проститутке — собственной жене». Эпизод «Новых признаний» выглядит правдоподобным, но сцена, описанная Вольпи, и жестока, и неправдоподобна.

Писатель Уильям Бойдсделал Курта Гёделяодним из героев своего романа Новые - фото 49

Писатель Уильям Бойдсделал Курта Гёделяодним из героев своего романа «Новые признания».

* * *

Доказательство теорем о неполноте

Хотя мы уделили немало времени объяснениям гениального метода нумерации, на создание которого Гёделя вдохновили труды Лейбница, не следует забывать, что этот метод — лишь средство достижения цели: доказать, что в любой непротиворечивой и рекурсивно перечислимой системе аксиом существуют истинные, но недоказуемые высказывания. В начале этой главы мы указали, по какой схеме должно выполняться это доказательство: в парадоксе лжеца нужно заменить понятие истинности понятием доказуемости и получить самоотносимое утверждение, которое гласит: «я недоказуемо». Если противоречия не допускаются, то это утверждение должно быть истинным, следовательно, недоказуемым. Основная сложность, как мы уже указывали, заключается в том, чтобы найти арифметический эквивалент этого утверждения на метаязыке, в котором речь идет не о числах, а о математических теориях. Теперь в нашем распоряжении есть все необходимые методы, позволяющие это сделать. Далее мы попытаемся изложить важнейшие этапы доказательства Геделя максимально простым языком.

Нужно перевести на язык арифметики утверждение «я недоказуемо». Но что означает доказуемость утверждения в системе аксиом арифметики? Это означает, что существует доказательство, которое заканчивается нашим утверждением, то есть конечная последовательность формул, каждая из которых является либо аксиомой, либо получена из предыдущих формул с помощью правил вывода. Чтобы определить, является ли последовательность формул, которую мы обозначим Z , доказательством высказывания X , нужно показать, что Z строится по вышеуказанному правилу и что его последней формулой является именно X . Основная идея заключается в том, чтобы с помощью «гёделизации» сопоставить формулам X и Z числа Гёделя, которые мы будем обозначать строчными буквами х и z . Нам хотелось бы найти механизм D , который позволял бы для натуральных чисел х и z через определенное количество шагов дать ответ, является ли последовательность формул, соответствующая числу z , доказательством формулы с числом Гёделя х . Следовательно, высказывание D( х, z ) будет истинным, если Z доказывает формулу X , и ложным — в противном случае.

Приведем простейший пример. Напомним, что число Гёделя для второй аксиомы Пеано равно

2 3·3 5·5 11·7 3·11 5·13 13·17 7·19 13·23 6·29 2·31 11·37 8.

Так как определяющее свойство аксиом гласит, что они являются доказательством самих себя, то если мы подставим вышеприведенное число вместо х и z в D( х , z), результат будет истинным: последовательность формул для числа Гёделя z , состоящая в этом случае лишь из второй аксиомы Пеано, является доказательством формулы, которой соответствует число х — это вновь вторая аксиома Пеано! Однако если мы введем в качестве значения z число 2 3·3 5·5 11·7 7·11 2·13 11·17 6·19 1·23 8, механизм D( х, z ) выдаст результат «ложь», так как формула, соответствующая этому числу, не является доказательством второй аксиомы Пеано. Тот факт, что формула для числа Гёделя х доказуема, означает, что существует число z такое, что после довательность формул, соответствующая z , является доказательством формулы, связанной с х . Иными словами, существует z такое, что высказывание D( х, z ) является истинным. Как следствие, формула z D( х, z ), которую для краткости будем обозначать Dem ( х ), гласит, что формула, соответствующая числу Гёделя х , доказуема. Вкратце повторим вышеизложенное: если бы существовала формула D , то благодаря «гёделизации» все тонкости доказуемости высказываний можно было бы свести к простому отношению между натуральными числами х и z . Какая же теория рассматривает подобные отношения? Арифметика!

Читатель уже наверняка понял, что наиболее трудоемкая часть работы Гёделя состояла в том, чтобы доказать, что механизм, обладающий описанными выше свойствами, действительно существует. Для этого Гёделю потребовалось 46 этапов, которые мы опишем лишь вкратце. Допустим, что дано некоторое натуральное число z, кодирующее некую последовательность формул. По основной теореме арифметики мы можем разложить z на простые множители:

z = p k1 · p k2 · p k3 ·…· р kn .

Итак, мы разложили число z на простые множители, возведенные в различные степени. Так как z соответствует последовательности формул, то каждый показатель степени будет числом Гёделя для одной из этих формул. Таким образом, мы можем определить числа Гёделя для всех формул последовательности, которые обозначим

k 1, k 2, k 3k n .

Вновь повторим одно из основных утверждений этой книги: доказательство — это конечная последовательность формул, каждая из которых является либо аксиомой, либо получена из предыдущих формул с помощью правил вывода. Следовательно, нужно подтвердить следующее:

— первый шаг: последовательность формул с числами Гёделя k 1, k 2, k 3k n является доказательством, то есть каждому из этих чисел соответствует либо аксиома, либо высказывание, которое получено из предыдущих с помощью правил вывода;

— второй шаг: последняя формула последовательности — это формула, которую мы хотим доказать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хавьер Фресан читать все книги автора по порядку

Хавьер Фресан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том. 22. Сон разума. Математическая логика и ее парадоксы отзывы


Отзывы читателей о книге Том. 22. Сон разума. Математическая логика и ее парадоксы, автор: Хавьер Фресан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x