Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике

Тут можно читать онлайн Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Де Агостини,, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 18. Открытие без границ. Бесконечность в математике
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини,
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0713-7 (т. 18)
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике краткое содержание

Том 18. Открытие без границ. Бесконечность в математике - описание и краткое содержание, автор Энрике Грасиан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить! Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ. Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.

Том 18. Открытие без границ. Бесконечность в математике - читать онлайн бесплатно полную версию (весь текст целиком)

Том 18. Открытие без границ. Бесконечность в математике - читать книгу онлайн бесплатно, автор Энрике Грасиан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Множество, образованное всеми подмножествами А , называется множеством-степенью A и обозначается картинка 82. Кантор доказал, что для любого множества его множество-степень больше, чем само множество, то есть оно содержит больше элементов, или, если быть математически корректными, его кардинальное число больше, чем у исходного множества. Будем обозначать кардинальное число А как | А |.

Изложенный выше результат можно записать так:

Том 18 Открытие без границ Бесконечность в математике - изображение 83

Ученому принадлежит доказательство нескольких теорем, но когда речь идет о теореме Кантора, обычно имеют в виду именно этот результат, который можно записать в виде

| А | < 2 | A |

Теорема Кантора позволяет упорядочивать бесконечности. Кантор считал, что «самая маленькая» бесконечность соответствует кардинальному числу множества — множества натуральных чисел. Это кардинальное число он обозначил .

Таким образом, имеем

| | =

По теореме Кантора получим:

Последовательность кардинальных чисел фигурирующую в этом неравенстве Кантор - фото 84

Последовательность кардинальных чисел, фигурирующую в этом неравенстве, Кантор назвал числами алеф, присвоив каждому из них порядковый номер: алеф-ноль, алеф-один и т. д. Они записываются буквой еврейского алфавита алеф с индексом:

Том 18 Открытие без границ Бесконечность в математике - изображение 85

Это так называемые трансфинитные числа.

В упорядоченной последовательности трансфинитных чисел содержится любое число, которое может существовать, в том числе такое, которое мы даже не можем себе представить. Если до Кантора считалось, что ничто не может быть больше бесконечности, то благодаря его открытиям мы можем с уверенностью утверждать, что всегда существует другая бесконечность, которая будет больше данной. Кантор превзошел самого Создателя: сколь большое число ни создал бы Бог, всегда будет существовать другое, большее число. И этот научный результат противоречил религиозным взглядам самого Кантора.

* * *

ПОЧТИ БЕСКОНЕЧНОСТЬ

За рамки нашей конечной природы выходят не только бесконечные или трансфинитные числа.

Например, число

Том 18 Открытие без границ Бесконечность в математике - изображение 86

которое может быть результатом неких математических расчетов, невероятно велико. Процессор компьютера, выполнив необходимые инструкции, может получить это число за разумное количество шагов. Это возможно потому, что и язык математики, и языки программирования предоставляют все необходимые для этих вычислений инструменты. Но если бы нам потребовалось записать все цифры этого числа на бумаге, мы не смогли бы этого сделать: для такой записи требуется лист бумаги, число частиц в котором превышает число частиц во всей Вселенной. Кроме того, для записи этого числа потребовалось бы время, значительно превышающее возраст Вселенной.

* * *

Континуум-гипотеза

Пока что мы говорили о кардинальности применительно к множеству. Мы увидели, что понятие кардинальности обозначает число элементов множества, а также что каждому элементу конечных множеств можно последовательно присвоить натуральное число. С другой стороны, когда речь идет о множествах с бесконечным числом элементов, пронумеровать их составляющие можно с помощью взаимно однозначного соответствия, при котором каждому элементу множества ставится в соответствие натуральное число. Множества, для которых возможно установить такое соответствие, называются счетными. Однако мы также увидели, что существуют множества, которые не являются счетными, и чтобы как-то обозначить количество их элементов, нам пришлось обратиться к понятию кардинальности. Таким образом, кардинальность множества — это не совсем число, а скорее понятие, связанное с числовой величиной. По сути, на этом понятии основан удивительный трюк, позволяющий узнать, насколько велико множество. Заключается он в сравнении множеств по определенным правилам, которые позволяют однозначно сказать, когда множества одинаково велики, а когда — нет. При этом не имеет значения, о конечных или бесконечных множествах идет речь.

* * *

СВОБОДА МАТЕМАТИКИ

Можно сказать, что в настоящее время мечта Кантора о свободной математике полностью сбылась. По меньшей мере, никто и ничто (в так называемых цивилизованных странах) не ставит палки в колеса авторам математических теорий по философским или религиозным причинам. Сегодня в математике используются так называемые «большие кардиналы», которые столь велики, что рядом с ними трансфинитные числа Кантора кажутся карликами. Их определение очень сложно, хотя они строятся по правилам, схожим с теми, что применяются к алеф-числам: рассматривается последовательность множеств, включенных одно в другое, затем анализируются соответствующие множества их частей.

* * *

Кантор назвал алеф-нулем кардинальное число множества натуральных чисел | | = , а кардинальное число множества вещественных чисел он обозначил термином «континуум» и символом с . Сделал он так потому, что вещественные числа полностью заполняют вещественную прямую, а так как эта прямая представляет собой непрерывную последовательность чисел (в ней отсутствуют промежутки), ее можно обозначить словом «континуум» (от лат. continuum — «непрерывное»).

В соответствии с этим

Том 18 Открытие без границ Бесконечность в математике - изображение 87

Однако числа алеф образуют возрастающую последовательность

Том 18 Открытие без границ Бесконечность в математике - изображение 88

Здесь Кантор сформулировал следующий вопрос: существует ли такой кардинал, который заключен между кардинальным числом множества натуральных чисел и континуумом? Каким-то образом ему удалось понять, что выполняется равенство

картинка 89

Иными словами, не существует множества, размер которого заключен между размером множества натуральных и вещественных чисел, — эта гипотеза называется континуум-гипотезой. Чтобы доказать ее, Кантору потребовалось приложить невероятные усилия. Не раз он считал, что континуум-гипотеза доказана, но ему так и не удалось сформулировать доказательство, которое его полностью устраивало бы.

Континуум-гипотезу безуспешно пытались доказать многие современники Кантора, в том числе Гильберт, Рассел и Цермело. Венгерский математик Денеш Кёниг(1849–1913) на конгрессе в Гейдельберге в 1904 году представил доказательство ложности континуум-гипотезы. Но Кантор верил своей интуиции и считал, что доказательство Кёнига не может быть истинным, хотя так и не смог найти в нем ошибку. Обнаружил ее Цермело, таким образом, вопрос доказательства континуум-гипотезы оставался открытым, и Гильберт включил его в свой знаменитый список из 23 наиболее важных нерешенных задач математики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энрике Грасиан читать все книги автора по порядку

Энрике Грасиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 18. Открытие без границ. Бесконечность в математике отзывы


Отзывы читателей о книге Том 18. Открытие без границ. Бесконечность в математике, автор: Энрике Грасиан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x