Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики
- Название:Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- ISBN:978-5-9774-0772-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики краткое содержание
Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!
Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другой способ, помогающий наглядно представить пространства высокой размерности, связан, как ни странно, с сокращением количества измерений. Большинство движений, которые могут быть изучены, происходят на самом деле в двух измерениях: например, вращение Земли вокруг Солнца совершается по орбите в виде эллипса и может быть схематически отображено на бумаге без каких-либо затруднений. Таким образом, для представления движения нам нужно только два измерения, а третье мы можем использовать для других интересующих нас величин, таких как энергия или импульс. То есть мы можем использовать пространственные измерения для представления величин, никак не связанных с пространством.
Познакомившись с n -мерными пространствами, мы можем рассмотреть, как они используются для описания поведения молекул газа. Для начала сосредоточим внимание на одной частице, а затем расширим анализ на неограниченное их число.
Вспомним, что положение частицы может быть описано с использованием любого типа координат, необязательно в прямоугольной системе. Поскольку наше пространство имеет три измерения, нам необходимо три числа для указания положения частицы. Координаты могут быть любыми, так что обозначим их через q и добавим какой-нибудь индекс: q 1, q 2 и q 3 .
Однако знание положения частицы не дает нам достаточно информации для возможности прогнозировать ее поведение. Для этого мы должны также знать, в каком направлении частица движется и с какой скоростью. В качестве варианта мы можем использовать импульс, который является произведением массы частицы на скорость (этот способ предпочитают физики, поскольку он значительно упрощает вычисления).
Для определения как импульса, так и скорости также нужно три числа. Предположим, что кто-то говорит нам: «Автомобиль выезжает на скорости 100 км/ч из Стамбула. За сколько времени он доедет до Москвы?» Ответ зависит от того, в каком направлении он едет: если авто выезжает на юг, поездка окажется очень длинной, потому что водителю придется обогнуть земной шар, но если он поедет напрямую в сторону Москвы, то прибудет на место намного раньше. Итак, недостаточно знать скорость автомобиля, нам нужно и число для определения направления. Кроме того, если бы у автомобиля была возможность летать, нам понадобилось бы и третье число, чтобы показать, что он движется не вверх, а горизонтально.
Другой способ понимания заключается в том, что у скорости есть три составляющие, по одной для каждого возможного направления. Каждая составляющая говорит нам о скорости, с которой объект движется в этом направлении. Поскольку импульс частицы — это масса, умноженная на скорость, нам также нужны три составляющие, по одной для каждой составляющей скорости.
Так как мы используем обобщенные координаты, каждой координате приписывается обобщенный импульс, обозначенный буквой р . Координате q 1 соответствует импульс p 1 и так далее.
Следовательно, чтобы представить частицу, нам нужно шесть чисел: три для положения и три для импульса, и это означает, что частица движется по шестимерному пространству. Положение частицы можно представить математически, записав три положения, а затем три импульса. Если обозначить положение в этом абстрактном пространстве положений и импульсов через r , мы можем его выразить следующим образом:
r = ( q 1, q 2, q 3, p 1, p 2, p 3 )
Пространство положений и импульсов называют фазовым пространством. Можно сказать, что частица описывает определенную траекторию в фазовом пространстве: как положение, так и импульс меняются во времени, следуя правилам, заданным уравнениями Гамильтона. Мы можем представить траекторию в фазовом пространстве точно так же, как мы это делаем в обычной жизни: нужно только помнить, что часть этих положений на самом деле представляют собой скорость частицы.
Теперь мы можем рассмотреть проблему многих частиц. Мы знаем, что для того, чтобы определить частицу в фазовом пространстве, нам нужно шесть чисел.
Сколько чисел потребуется для двух частиц? Шесть для первой и шесть для второй, то есть 12. Итак, систему из двух частиц можно рассматривать так, будто речь идет об одной частице, движущейся в 12-мерном пространстве. Поскольку уравнения Гамильтона работают для любого числа измерений, мы должны будем всего лишь решить большее число уравнений, и в этом преимущество его математической разработки.
Из предыдущих рассуждений можно сделать вывод, что каждый раз, когда мы будем добавлять частицу, нам потребуются еще шесть чисел: три для ее положения и три для ее импульса. Следовательно, для системы из N частиц число координат, которые нам понадобятся, равно 6 N . То есть система из N частиц соответствует одной частице, движущейся по пространству из 6 N измерений. Хотя в это и не верится, но решить задачу с частицей, движущейся по пространству из 6 N измерений, легче, чем задачу с шестью измерениями для каждой частицы.
Положение частицы на фазовой диаграмме можно представить как группу чисел, разделенных запятыми:
r = ( q 1, q 2, q 3, p 1, p 2, p 3 )
где q обозначает положения, р — импульсы. Чтобы представить две частицы, нам нужно всего лишь удвоить число координат следующим образом:
r = ( q 1, q 2, q 3, q 4, q 5, q 6,p 1, p 2, p 3, p 4, p 5, p 6 )
где первые три положения соответствуют первой частице, а три следующие — второй; то же самое касается импульсов.
В целом для N частиц положение в фазовом пространстве задано рядом чисел, в котором количество каждой координаты в три раза больше, чем число частиц:
r = ( q 1, q 2, q 3… q 3N, p 1, p 2, p 3 … p 3N )
Этот набор чисел, разделенных запятой, говорит нам о положении точки в фазовом пространстве, поскольку это аналог точки в трех измерениях, но распространенный на произвольное число измерений. С течением времени частица меняет положение в фазовом пространстве, следуя траектории, которую мы можем вычислить, пользуясь уравнениями Гамильтона.
Описать траекторию частицы в фазовом пространстве — сложная задача, поскольку невозможно представить столько измерений одновременно. Но иногда мы можем ограничиться некоторыми измерениями, например горизонтальным положением и импульсом в этом же направлении.
Самый простой случай — это случай частицы, движущейся в одном измерении, то есть вдоль прямой линии. Несмотря на это ограничение, частица может перемещаться самыми разными способами: она может колебаться вперед и назад или осуществлять ускоренное движение в одном направлении.
Каждому случаю будет соответствовать своя траектория в фазовом пространстве. Изучение этих траекторий позже поможет нам понять некоторые свойства систем с большим количеством частиц, в частности газов.
Читать дальшеИнтервал:
Закладка: