Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике
- Название:Том 9. Загадка Ферма. Трехвековой вызов математике
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- ISBN:978-5-9774-0625-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике краткое содержание
На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.
Том 9. Загадка Ферма. Трехвековой вызов математике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
До выхода перевода Баше теория чисел не вызывала интереса математиков. Считалось, что задачи теории чисел — не более чем математические курьезы, любопытные, но носящие частный характер. Объектами всеобщего внимания в то время были геометрия и анализ. Но после публикации трудов Ферма теория чисел быстро привлекла к себе интерес наиболее выдающихся математиков: Виета, Декарта, Гаусса, Эйлера, Якоби, Лагранжа, Лежандра, Дирихле, Дедекинда, Кронекера и многих других. Это лишь часть обширного перечня ученых, которые занимались исследованиями теории чисел — «королевы математики», как считал Гаусс.

Портрет математика XVIII века Жозефа Луи Лагранжа, который изучал различные задачи, поставленные Ферма.
* * *
РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ
Диофантовы уравнения имеют целые коэффициенты и целые решения. Сначала удалось решить диофантовы уравнения первой степени, что позволило найти решения многих практических задач. Рассмотрим один наглядный пример. Допустим, что наш сосед отправился за покупками и хочет купить растительного масла на целый год вперед. Вернувшись из магазина, он сказал, что нашел два сорта масла — один по 3,24 евро за литр, другой по 4,50 евро за литр — и что всего он потратил 43,20 евро. В ответ мы говорим, что И бутылок будет явно недостаточно на весь год.
Как мы узнали, сколько бутылок купил сосед, если мы даже не открывали пакеты, которые он принес из магазина? Обозначим за хчисло бутылок стоимостью 3,24 евро, за у— число бутылок по 4,50 евро. Выразим потраченную сумму с помощью уравнения и получим 3,24 х + 4,50 у= 43,20. Это уравнение имеет дробные коэффициенты, но если умножить обе части на 100, получим уравнение с целыми коэффициентами: 324 х + 450 у = 4320. Следовательно, нужно найти такие хи у, для которых это равенство было бы верным. Они должны быть целыми, так как число бутылок каждого сорта обязательно целое. Необходимое и достаточное условие наличия целых корней уравнения с целыми коэффициентами таково: наибольший общий делитель коэффициентов при неизвестных должен быть делителем свободного члена. Наибольший общий делитель 324 и 450 равен 18. 4320 нацело делится на это число. Поделив обе части уравнения на 18, получим 18 х+ 25 у= 240. Теперь мы можем составить таблицу решений для этого уравнения. Для этого будем присваивать хцелые значения, начиная с 0, и находить соответствующие значения у, которые удовлетворяют уравнению, то есть такие, что у= (240 — 18 х)/25.

Из этой таблицы видно, что единственными целыми положительными решениями являются х= 5, у= 6, следовательно, всего наш сосед купил 11 бутылок растительного масла. Со временем методы решения уравнений подобного типа совершенствовались и были реализованы в компьютерных программах и инженерных калькуляторах.
* * *
В 1885 году сэр Томас Хит опубликовал первый перевод «Арифметики» на английский язык. Второе издание этого замечательного перевода увидело свет в 1910 году. В него были включены комментарии Баше, Ферма и других. Многие античные авторы оставляли в книгах свои комментарии. В различные издания и переводы часто включались примечания редактора и переводчика, но при этом не указывалось, что именно является частью исходного текста, а что — комментариями. Возможно, тогда считалось, что настоящий шедевр строится со временем и любой желающий может изучить его и дополнить чем-то новым. Следовательно, с исторической точки зрения очень важно иметь как можно больше изданий одной и той же книги, чтобы видеть, как ее текст изменялся со временем.
Изучив рукописи, которые сохранились до наших дней, Таннери предположил, что все они имеют один общий источник. По-видимому, этим общим источником является издание «Арифметики» с комментариями Гипатии Александрийской. Согласно этой же теории, данный труд включал именно те шесть книг, которые дошли до наших дней. Утерянными оказались те книги, которые не были прокомментированы Гипатией. Если это так, то именно усилиями Гипатии до нас дошла часть наследия Диофанта. Также весьма вероятно, что сама Гипатия существенно дополнила эти книги. В настоящее время исследователи продолжают работу, и окончательный ответ все еще не найден.
Один из экземпляров издания с комментариями Баше попал в руки Ферма. Тот прекрасно владел латынью и греческим и мог читать «Арифметику» на двух языках. Кроме того, это издание уже содержало комментарии, словом, служило идеальной отправной точкой для новых комментариев.
Задача 32 из книги II
Эта задача формулируется так:
«Найти три числа, таких что квадрат любого из них, сложенный со следующим числом, дает квадрат».
Можно использовать любые способы решения. Возможно, если нам повезет, мы сможем найти верный ответ. Можно начать, например, с того, что выбрать в качестве первого числа 1. Теперь, по условию, его нужно возвести в квадрат и прибавить к нему следующее из трех чисел, при этом результат должен также являться квадратом. Например, 1 2+ 3 = 4 = 2 2. Итак, мы выбрали 1 и 3. Теперь возведем 3 в квадрат и прибавим к нему некое число так, чтобы результат тоже был квадратом. Например, З 2+ 7 = 16 = 4 2. Имеем 1, 3 и 7. Теперь осталось совершить последний шаг цикла и подтвердить, что 7 в квадрате, сложенное с 1, также дает квадрат: 7 2+ 1 = 50. Увы, но 50 не является квадратом. Следовательно, нужно начинать все сначала и попробовать другие числа. Эта задача подобна головоломке: нужно правильно расставить все элементы по своим местам. Ферма проводил многие часы за решением подобных задач. Они бросали вызов его воображению, и такой же вызов позднее бросил современникам он сам.
Решение задачи 32
Диофанту было известно решение этой задачи, и непохоже, что он нашел его случайно. Скорее всего, ему был известен некий загадочный метод решения. Решение, предложенное Диофантом, таково:
«Обозначим первое число за х , второе примем равным 2 х + 1, третье — 2(2 х + 1) + 1, то есть 4 х + 3, так что два условия задачи выполняются. Последнее условие формулируется так: (4х + 3) 2+ х = квадрат = (4 х — 4) 2. Следовательно, х = 1/51, а тройка искомых чисел такова: 7/57, 71/57, 199/57».
Как получилось, что подобные выкладки приводят к верному ответу? Нет никаких сомнений, что Диофант был выдающимся математиком. Он обозначил первое число за х . Второе число он мог выбрать любым способом, но обозначил его за 2 х + 1, потому что знал, что х 2+ 2 х + 1 = ( х + 1) 2, следовательно, выполнялось первое условие. Третье число он также мог выбрать произвольным образом, но выбрал 2(2 х + 1) + 1, то есть 4 х + 3, поскольку он знал, что (2 х + 1) 2 + 2(2 х + 1) + 1 = (2 х + 2) 2, следовательно, выполнялось и второе условие. Остается лишь третье условие, а именно: (4 х + 3) 2+ х = квадрат. Здесь снова проявляется гений Диофанта: он понял, что этот квадрат может быть представлен в виде (4 х — 4) 2, и в этом случае для решения задачи достаточно найти корни очень простого уравнения.
Читать дальшеИнтервал:
Закладка: