Карин Мёллинг - Вирусы: Скорее друзья, чем враги
- Название:Вирусы: Скорее друзья, чем враги
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5270-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карин Мёллинг - Вирусы: Скорее друзья, чем враги краткое содержание
Вирусы есть повсюду: в воздухе, растениях и животных, внутри нас самих и даже на нашей коже. Они борются с бактериями, влияют на погоду, наше самочувствие и настроение, могут способствовать ожирению или лечить от него. Вирусы – часть нашего генома! Они помогли нам стать теми, кто мы есть.
Известная вирусолог Карин Мёллинг описывает невероятный и мало знакомый нам мир вирусов. Из книги вы узнаете о прошлом вирусов, о том, как они помогали людям эволюционировать, и о том, как мы можем использовать их в будущем.
Вирусы: Скорее друзья, чем враги - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существуют дезоксирибозимы, небольшие каталитические ДНК, которые могут расщеплять и присоединять так же, как рибозимы, без белков, но сегодня они не встречаются в природе. Их поиском занимается Джек Шостак, на которого часто ссылаются. Он показывает, что РНК может расти и без белков, в частности полимераз. А как на первых этапах формирования жизни могла появиться ДНК при отсутствии белков РНК? Может быть, ему это удастся выяснить. Исследователь из Парижа Патрик Фортер считается первым ученым, заявившим о существовании трех РНК-содержащих клеток у бактерий, архей и эукариотов, которые он назвал «рибовироклетки», поскольку все они являются вирус-производящими клетками. Так откуда же взялась ДНК? Таким образом, вопрос о происхождении ДНК остается открытым, что довольно странно, учитывая важность этой молекулы. Одно можно сказать без сомнения: обратная транскриптаза была главной движущей силой при переходе от мира РНК к миру ДНК. В 2015 г. обратную транскриптазу обнаружили как наиболее распространенный белок в геномах, клетках, различных организмах, включая образцы из океана. Обратная транскриптаза столь часто встречающийся фермент, так как она является частью повсеместно встречающихся ретротранспозонов, «прыгающих» генов. Должно быть, «прыжки» продолжаются в большом количестве. По мнению некоторых исследователей, это был самый главный, ключевой фермент для развития жизни в процессе эволюции. В настоящее время это подтверждено данными! Примечание: другие исследователи так думают, и, конечно же, я тоже, однако я могу быть необъективной, поскольку занимаюсь изучением обратной транскриптазы последние 45 лет. Какой удивительный путь от первого открытия этого фермента до понимания, что он самый распространенный белок в мире!
«Листья клевера»
Один из показательных примеров молекулярной структуры РНК является тип, по форме напоминающий лист клевера, то есть три петли вокруг стебля. Такую модель любой человек может нарисовать на листе бумаги, а не то что выявить в результате кристаллографического анализа структуры. Эта РНК очень стабильна. Может быть, поэтому мы обнаруживаем эту структуру везде – от молекулярного до макроскопического мира и листа клевера на зеленых лугах? Вопрос серьезный. Еще более удивительно то, что РНК типа «лист клевера» широко используется вирусами растений. Структуры типа «лист клевера» располагаются на концах их РНК-геномов, которые часто бывают одноцепочечными, и предназначены для их защиты от разрушения. У теломераз на конце хромосом есть выполняющие такие же защитные функции псевдоузлы, которые имеют некоторое сходство с РНК на концах геномов вирусов. Кроме того, у фагов, как и у РНК-содержащих вирусов, например у вируса гепатита C и полиовирусов, есть такого же рода концевые петлеобразные структуры. Это распространенный механизм защиты вирусами своих концов. Существуют даже вирусы, которые состоят из единственной РНК типа «лист клевера» и единственной аминокислоты – вот и весь вирус! Меньше структуру невозможно себе представить. Еще один вирус, нарнавирус ( narnavirus) (в его названии имеется обозначение РНК), содержащийся в пекарских дрожжах, вирус Saccharomyces cerevisiae, состоит лишь из половины РНК типа «лист клевера», и больше ничего. Это крайне минималистичная структура, и ее вряд ли можно еще уменьшить. Вероятно, РНК-содержащие вирусы сформировали подобные структуры типа «лист клевера» из трех шпилек. Эти РНК содержат 75–90 пар оснований и не отличаются гибкостью, вероятно, в силу наличия двухцепочечных участков. А теперь мне нужно наконец-то назвать ее настоящее имя – «тРНК», то есть «транспортная РНК», поскольку она осуществляет перенос отдельных аминокислот в рибосомы для вхождения в растущую полипептидную цепочку. Именно благодаря этому ее открыли и описали. Одна тРНК и одна аминокислота в итоге эволюционировали в 60 видов тРНК и 20 аминокислот в наших клетках. Сегодня они являются важными компонентами синтеза белков рибосомами. Возможно, они произошли от вирусов, так как использовали тРНК-структуры в своих РНК-геномах до появления синтеза белков. тРНК – это некодирующие нкРНК, что и подчеркивает их древнее происхождение. Вирусы S. cerevisiae, находящиеся в дрожжах, похоже, возникли на ранних этапах синтеза белков. Репликация ретровируса также напоминает ранние этапы синтеза белка. Поэтому можно предположить, что вирусы являются создателями или предшественниками механизма синтеза белка.
Могут найтись люди, готовые опровергнуть это и предположить, что вирусы «украли» тРНК и аминокислоты из клеток. Именно так действует обратная транскриптаза, чтобы инициировать репликацию ретровируса. Она забирает тРНК из клеточного пула. Каждый тип вируса имеет разные предпочтения по тРНК. Обратной транскриптазе для обратной инициации требуется определенное содействие, и для этих целей она использует тРНК. Во всех учебниках вирусологии отмечено, что вирусы «крадут» клеточные компоненты. А я думаю, что все как раз наоборот! С моей точки зрения, вирусы были «изобретателями» клеточных строительных блоков, своего рода «бодибилдерами» клеток, а сейчас, похоже, получают выгоду от своих прошлых достижений. Может быть, вам будет любопытно узнать, что способность к синтезу белков многие считают критерием, отделяющим живой мир от мертвого. Если синтез белков невозможен, система неживая, что применимо к большинству современных вирусов. Но не нужно забывать о гигантских вирусах, которые содержат тРНК и рибосомы – отличительные черты синтеза белка; правда, это касается только неполных комплектов, а не всех их. Может быть, они чего-то лишились или остались незавершенными?
И все же это побудило ученых, открывших гигантские вирусы, заявить о них как об источниках происхождения жизни. А теперь предоставим читателю возможность сделать собственные заключения или подождать, пока не появятся результаты новых экспериментов.
РНК стали важным биотехнологическим инструментом. РНК могут исключительно за счет фолдинга проявлять свойства, аналогичные свойствам гораздо более сложных белков, состоящих из 20 аминокислот, в отличие от нуклеотидов, необходимых для синтеза РНК. Поэтому синтетическая РНК гораздо дешевле, чем белки, и ее синтез протекает быстрее. Она может принимать сложные структуры и «вписываться» в рецепторы, заменяя белки, даже имитируя специфические белковые лиганды. Эти РНК называются аптамерами. Их можно синтезировать в лабораторных условиях всего лишь из четырех нуклеотидов (белкам требуется 20 аминокислот), и в пробирке они даже могут пройти некоторую эволюцию и селекцию для совершенствования структуры и состава. Этот метод называется SELEX – акроним, обозначающий процедуру выбора и селекции. Он был разработан Томасом Чехом. Манфред Эйген, лауреат Нобелевской премии в области химии и сотрудник Общества Макса Планка в Гёттингене, основал две компании: Evotec и Direvo. Названия компаний сами по себе свидетельствуют о том, что их цели заключаются в осуществлении эволюционных химических процессов, «регулируемой эволюции». Он разработал искусственную эволюцию применительно к химическим соединениям в качестве новой процедуры оптимизации в пробирке. Это привело к появлению белков-ферментов с гораздо более высокой каталитической активностью, никогда не встречавшихся в природе, более эффективных процессов, лучшему использованию биомассы и новым биологически активным соединениям. Специфический характер работы Эйгена заключался в том, что он применял эволюционный принцип также к небиологическому миру молекул для улучшения химических продуктов, неживых соединений. Эйген, который по первому образованию физик, намного опередил своих коллег-современников, создав одно из новых направлений в химии.
Читать дальшеИнтервал:
Закладка: