Карин Мёллинг - Вирусы: Скорее друзья, чем враги
- Название:Вирусы: Скорее друзья, чем враги
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5270-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карин Мёллинг - Вирусы: Скорее друзья, чем враги краткое содержание
Вирусы есть повсюду: в воздухе, растениях и животных, внутри нас самих и даже на нашей коже. Они борются с бактериями, влияют на погоду, наше самочувствие и настроение, могут способствовать ожирению или лечить от него. Вирусы – часть нашего генома! Они помогли нам стать теми, кто мы есть.
Известная вирусолог Карин Мёллинг описывает невероятный и мало знакомый нам мир вирусов. Из книги вы узнаете о прошлом вирусов, о том, как они помогали людям эволюционировать, и о том, как мы можем использовать их в будущем.
Вирусы: Скорее друзья, чем враги - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вокруг существует очень мало других редких типов вироидов, например один ретровироид, обнаруженный не в печени, а в цветах гвоздики. Он называется малым вироидом гвоздики (Carnation Small Viroid, CarSV). Источником обратной транскриптазы является параретровирус гвоздики – вирус растений, который копирует рибозим в ДНК. Он патогенен для цветов – следует помнить, что вирусы обнаруживают именно при проявлении болезней. Возможно, здесь присутствовал коммерческий интерес лиц, занимающихся промышленным выращиванием гвоздики, которые хотели избавиться от болезненных гвоздик и обнаружили этот странный вирус. Цветочный вироид лишился своей каталитической активности и более был не способен расщеплять РНК. Это вовсе не редкое явление для вироидов. В зависимости от условий среды они становятся «ленивыми» (теряют каталитическую активность), но нуждаются в помощи. В цветах так же, как и в печени, происходит своего рода синергия между двумя вирусами, например вироидом и ретровирусом (в одном случае они делят одну оболочку и обратную транскриптазу – в другом). Почему? В мире вирусов, как и в биологии в целом, все развивается методом проб и ошибок. Синергизм, или мутуализм, или социальное поведение, или симбиоз – очень успешные стратегии для всех живых организмов, включая вирусы.
На конгрессах я спрашивала у своих коллег, знают ли они что-нибудь о ретрофагах. Я думаю, они должны были существовать и даже в большом количестве до того, как в процессе эволюции развились все ДНК-содержащие фаги, видимо, из РНК и ретровирусных посредников. Если существуют ретровироиды, почему бы не существовать ретрофагам? Мне удалось найти один (!) такой ретрофаг, известный молодым мамам и сопровождающий бактерии, вызывающие коклюш, – Bordetella pertussis. Этот микроб инфицирует маленьких детей, вызывая страх у их матерей. У ретрофага даже нет названия! Обратная транскриптаза, работа которой, как известно, подвержена ошибкам, позволяет фагам найти нового хозяина ( она оказывает мутирующий эффект на ген, ответственный за выбор бактерии-хозяина; это явление называется тропизмом или диапазоном хозяев; MDT – ген основного детерминанта тропизма).
Этот пример заслуживает упоминания, потому что показывает, как вирусы находят нового хозяина: это происходит из-за ошибок, «неверности» и «разгильдяйства» обратной транскриптазы. Это хорошо известный факт в отношении ВИЧ – он «убегает» из одного типа клетки, где обосновался на начальном этапе инфицирования, в другую клетку на поздних этапах (клетки с рецепторами CCR5 и CXCR4) и мутирует быстрее, чем на это может отреагировать иммунная система.
Вирусы являются двигателями эволюции, так же как и фаги бактерий. Вирусы и фаги – родственники. Рискованно ли предположить, что ДНК-фаги когда-то «начинались» как РНК-фаги? В главе 12 этот вопрос рассматривается, исходя из скорости репликации. А потом – и случилось это очень давно – РНК-содержащие фаги или ретрофаги устарели! Но матерям кашляющих детей все эти «сказки» о ретрофагах, к сожалению, мало полезны.
Вирус табачной мозаики
Когда более 30 лет назад возникло Общество вирусологии, в Германии не было ни одного специалиста по вирусам растений, который мог бы стать членом этого общества. Вироиды не считались вирусами! Поэтому исследователи вироидов в члены общества не допускались. Это еще более удивительно потому, что первым открытым вирусом растений был вирус табачной мозаики (ВТМ). В 1898 г. Мартин Бейеринк показал, что фильтрат из листьев табака, зараженных этим вирусом, содержит агент, который инфицирует здоровые листья. Он ввел понятие «вирус», чтобы отличить его от более крупных бактерий. Он всегда ссылался на своего учителя русского ученого Дмитрия Ивановского, который начал это исследование на несколько лет раньше, но всегда считал, что имеет дело с бактериями, а не с новым агентом. ВТМ внутри клеток похож на штабель бревен, уложенных параллельно друг другу. Вирусы образуют паракристаллические агрегаты и немного похожи на кристаллы. В 1930 г. Хельмут Руска при помощи электронного микроскопа впервые наблюдал длинные «кристаллиновые» структуры. Но не он, а его брат Эрнст много лет спустя получил Нобелевскую премию за усовершенствование конструкции электронного микроскопа за счет использования магнитных линз вместо стеклянных. Здание его института в Берлине-Далеме построено на толстых фундаментных плитах для нейтрализации вибрации от проходящих поездов подземки. Вирус табачной мозаики кристаллизуется почти самостоятельно и является примером эффективной самоорганизации вирусов. В 1946 г. Уэнделл Стэнли из Нью-Йорка получил Нобелевскую премию за структурный анализ.
Он также показал, что кристаллы вируса сохраняют инфицирующую способность даже после 40 лет пребывания в высушенном кристаллообразном состоянии на поверхности – это интересный пример «почти мертвого» кристаллического вещества, обладающего биологической активностью. Инфицирующая РНК находится внутри жесткой белковой структуры, где она хорошо защищена. Одной из студенток Стэнли была Розалинд Франклин. Она предположила, что РНК должна находиться внутри вируса, в канале внутри спирального стержня белка, и оказалась права: одноцепочечная РНК в спиралях окружена белком. Позднее Франклин получила «фотографию 51», рентгеновский снимок спирали ДНК, не подозревая, что он ляжет в основу двуспиральной модели ДНК.
Исследования Стэнли побудили Адольфа Бутенандта, бывшего в то время президентом Общества Макса Планка, начать исследования в новой для Германии области – вирусологии. В Общество Макса Планка входили институты, занимавшиеся проблемами, которые, казалось, не имели никакого шанса на продолжение после Второй мировой войны. Одним из них был Институт антропологии, человеческой генетики и евгеники им. кайзера Вильгельма в Берлине. У меня до сих пор есть микроскоп с выгравированным на нем названием института. Преемником этого института стал Институт молекулярной генетики Общества Макса Планка. Затем у этого института появилось новое научное направление – молекулярная генетика. Хайнц Шустер, вернувшийся в Германию из Пасадены, и Хайнц-Гюнтер Виттманн из Тюбингена были назначены директорами. Они оба исследовали вирус табачной мозаики и способствовали идентификации генетического материала – не белков, как тогда полагали, а нуклеиновых кислот, РНК, наличие которых они доказали в ходе исследований мутагенеза, используя нитрозамины. Не привели ли эти эксперименты к мутации генетического материала самих исследователей? Весьма возможно, они не пользовались одноразовыми перчатками, а может быть, у них их даже не было? Оба исследователя умерли от рака в довольно молодом возрасте. У Шустера диагностировали рак, связанный с профессиональной деятельностью.
Читать дальшеИнтервал:
Закладка: