Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем
- Название:Актуальность сложности. Вероятность и моделирование динамических систем
- Автор:
- Жанр:
- Издательство:«Эдитус», Москва
- Год:2017
- ISBN:978-5-00058-502-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем краткое содержание
Актуальность сложности. Вероятность и моделирование динамических систем - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вместе с тем, оказалось, что свойство живых систем, характеризуемое как «эквифинальность», может быть выведено в качестве следствия обобщенных законов термодинамики в применении к сложным структурам [101]. Берталанфи показал, что для открытых систем, стремящихся к подвижному равновесию, второй закон термодинамики принимает модифицированный вид: скорость возрастания энтропии внутри системы стремится в этом случае к минимальному значению, соответствующему динамическому равновесию. В такой форме данный закон относится к системам более общего типа, нежели те, к которым относится второй закон термодинамики в его обычной формулировке [102].
Сам Берталанфи писал, что в дальнейшем была выявлена возможность применения в биологии, психологии и социологии математических моделей, неприложимых в физике и химии. В определенном плане эти науки стали превосходить физику как образец точности. Одновременно выяснился изоморфизм таких моделей, построенных для различных областей [103].
Тем самым отмечалась способность ОТС к охвату ряда новых проблем и их решению, причем таких, которые отвергались ранее как «метафизические». И одновременно ОТС оценивалась лишь как одна из теорий, реализующих новую парадигму, концептуальную схему, совершающую сдвиг в исследуемых проблемах и правилах научной деятельности.
В своих статьях 60-х годов Берталанфи вел речь об ОТС в 2-х смыслах. В широком смысле ОТС выступает как некая совокупность идей и проблем исследования и конструирования систем, в теоретическую часть которой он включает: 1) кибернетику; 2) теорию информации; 3) теорию игр; 4) теорию решений; 5) топологию; 6) факториальный анализ; 7) собственно общую теорию систем, стремящуюся из общего определения системы как комплекса взаимодействующих элементов выработать производные понятия, описывающие функционирование и поведение организованных целых.
Следовательно, лишь последнее являлось по Берталанфи теорией систем в подлинном смысле слова, и ее разработке уделял он основное внимание. В другом же случае ОТС выступает обширным комплексом научных дисциплин, реализующих тот или иной аспект системного подхода, перечень которых, видимо неполон, к тому же не ясны критерии их отнесения к единому течению ОТС. Можно, видимо, утверждать, что в таком широком определении ОТС Берталанфи искал способ какой-то упорядоченности, систематизации эмпирической действительности системных исследований, не давая в явном виде средств и аппарата подобного упорядочивания.
Итак, в данном варианте ОТС в центр системной проблематики ставились «организованные целые», «организованные сложности», отличительным признаком которых признавалось наличие сильных взаимодействий между их компонентами, а также их нелинейность. И в этом смысле процедура системного описания, исследования объектов была противоположна аналитической процедуре классической науки, восходящей еще к Галилею и Декарту. Там, где невозможно реально, логически или математически «извлекать» части из целого, затем их «собирать», восстанавливая целостную картину, а также невозможно простое наложение частных процессов для получения процесса в целом, там возникает необходимость в системном подходе [104].
Для этой цели использовались различные модели, математические средства и т.д., в соответствии с чем и может идти речь о том или ином способе реализации системного исследования.
В своей ОТС, понимаемой в узком смысле слова, JI. Берталанфи применял так называемую классическую математику; и считал, что на этой основе можно установить всеобщие формальные свойства систем вообще, а также разработать средства для их исследования и описания. Широкая общность и приложимость классической математики служила здесь гарантией отнесения некоторых формальных системных свойств к любым объектам, которые представляют собой системы [105]. В качестве примера назывались обобщенные принципы кинетики, применяемые, в частности, к популяциям молекул или биологических существ, т.е. к химическим и экологическим системам; уравнения диффузии, используемые в физической химии и для анализа процессов распространения слухов и т.д.
Двигаясь по пути выявления формальных системных свойств, относящихся к любой сущности, которая является системной (здесь используется общая модель системы, выразимая понятием «организованное целое»), Берталанфи формулировал ряд общесистемных законов. Например:
1. закон оптимальных размеров системы (ограничение размеров ростом коммуникативных сетей);
2. закон неустойчивости (отсутствие устойчивого равновесия из-за циклический флуктуаций, обусловленных взаимодействием систем);
3. закон олигополии (имеется возможность сосуществования многих соперничающих малых систем; но при наличии лишь двух огромных конфликтующих систем происходит страшный взрыв и, возможно, самоуничтожение обеих) [106].
Установление такого рода законов Берталанфи оправдывал ценностью и плодотворностью идеи изоморфизма, играющей существенную роль в современной науке. Основное назначение этой идеи он видел в необходимости расширить наши концептуальные схемы, чтобы установить совокупность точных законов в тех сферах, где применение физико-химических законов, долгое время считавшихся эталоном «законов природы», оказывается невозможным. Согласно Берталанфи, поскольку целый ряд наук имеют дело с «системами», постольку обнаруживается формальное соответствие или изоморфизм их общих принципов или даже их особых законов, если условия отвечают рассматриваемым явлениям [107].
Общую теорию систем он задумывал как точную доктрину целостности, точнее как гапотетико-дедуктивную систему тех принципов, которые вытекают из определения системы и при введении более или менее специфических условий. В этом смысле ОТС являлась априорной и независимой от ее интерпретации на основе эмпирических объектов, применимой ко всем эмпирическим областям, имеющим дело с системами. Берталанфи определял ее положение среди других наук идентично теории вероятностей, которая сама по себе является формальной математической доктриной, но которая посредством эмпирической интерпретации применима к биологическим и медицинским экспериментам, в генетике, статистике страхования и т.д. [108].
В качестве важного аспекта идеи изоморфизма законов и концептуальных моделей Берталанфи называл структурную однородность мира, униформность, проявляющуюся в чертах изоморфического порядка в разных его сферах и на разных уровнях. Вместе с тем, он признавал бесплодность попыток свести все уровни реальной действительности к некоторому самому фундаментальному уровню [109].
Читать дальшеИнтервал:
Закладка: