Мичио Каку - Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
- Название:Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9064-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мичио Каку - Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия краткое содержание
По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.
Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Также улучшить возможности нашего мышления способна генная инженерия. В Принстонском университете выделили ген NR2B, он же «ген умной мыши», отвечающий за способность этих животных ориентироваться в лабиринтах. Ген NR2B участвует в обеспечении связи между клетками гиппокампа. Исследователи выяснили, что, когда ген NR2B у мышей отсутствует, их память при исследовании лабиринта заметно ухудшается. И напротив, если у мышей имеются лишние копии гена NR2B, их память заметно улучшается.
Исследователи помещали мышей в неглубокий бассейн с подводной платформой, на которой мыши могли стоять. Обнаружив платформу один раз, умные мыши мгновенно запоминали, где она находится, и плыли прямо к ней, когда их заново запускали в бассейн. Обычные мыши не могли запомнить расположение платформы и каждый раз плыли в случайном направлении. Все говорит о том, что улучшение памяти вполне возможно.
Летать, как птицы?
Испокон веку люди мечтали летать, как птицы. На сандалиях и шляпе бога Меркурия были маленькие крылышки, позволявшие ему летать. Согласно мифу, Икар с помощью воска прикрепил к рукам перья. К несчастью, он подлетел слишком близко к Солнцу. Воск расплавился, и юноша рухнул в океан. Технологии будущего позволят нам наконец обрести дар полета.
На планетах с разреженной атмосферой и сильно изрезанными ландшафтами (например, на Марсе) самым удобным способом передвижения, видимо, будет реактивный ранец — один из излюбленных атрибутов научно-фантастических мультфильмов и фильмов. Впервые такое устройство появилось в первом комиксе о Баке Роджерсе в далеком 1929 г. Бак встречает свою будущую подружку, когда она носится по воздуху с реактивным ранцем за плечами. В реальности такой ранец был создан во время Второй мировой войны, когда нацисты искали быстрый способ переправляться через реки, где не было мостов. Первый ранец заправляли перекисью водорода, которая быстро вспыхивает при контакте с катализатором (таким, как серебро) и выделяет при горении энергию и воду. Однако у реактивного ранца есть несколько серьезных проблем. Главная состоит в том, что запаса топлива хватает всего на 30–60 с работы. (Иногда в старых выпусках кинохроники, например Олимпиады 1984 г., можно увидеть, как отчаянные носители ракетных ранцев парят в воздухе. Однако эти сюжеты смонтированы, на самом деле испытатели удерживаются в воздухе все те же 30–60 с, а затем приземляются.)
Решить эту проблему могла бы портативная силовая установка, способная обеспечивать длительный полет. К сожалению, пока таких двигателей у нас нет.
По этой же причине у нас нет лучевого оружия. Им вполне мог бы стать лазер, но только если под боком у вас имеется атомная электростанция, обеспечивающая энергией. А носить атомную электростанцию на плечах весьма непрактично. Реактивные ранцы и лучевые пистолеты появятся только после того, как мы построим мощные миниатюрные силовые установки, возможно в виде нанобатарей, запасающих энергию на молекулярном уровне.
Еще одна возможность, знакомая нам по фильмам про ангелов и людей-мутантов, — это использование крыльев, как у птиц. Не исключено, что на планетах с плотной атмосферой можно просто подпрыгнуть, взмахнуть крыльями, закрепленными на руках, и взлететь, как птица. (Чем плотнее атмосфера, тем больше подъемная сила и тем проще летать.) Мечта Икара может стать реальностью. Но у птиц есть ряд преимуществ перед нами. У них пустотелые кости, а тела довольно легкие и к тому же маленькие по сравнению с размахом крыльев. Человек же создание весьма плотное и тяжелое. Нам понадобились бы крылья размахом 6–9 м, а чтобы взмахивать ими, потребовались бы куда более сильные мышцы спины. Модифицировать бескрылое существо методами генной инженерии так, чтобы у него появились крылья, мы не можем. Нам пока непросто даже переместить корректно один-единственный ген, не говоря уже о сотнях генов, необходимых для создания жизнеспособного и эффективного крыла. Так что хотя теоретически человек может когда-нибудь получить ангельские крылья, мы пока очень далеки от этого результата, да и выглядеть это крылатое создание будет, вероятно, не так изящно, как мы привыкли видеть на картинах старых мастеров.
Когда-то считалось, что генная инженерия как средство улучшения рода человеческого всего лишь мечта писателей-фантастов, не более. Однако новые революционные открытия изменили ситуацию. Темпы развития в этой области науки настолько высоки, что ученые собирают конференции и обсуждают, как бы эти темпы немного замедлить.
Революция CRISPR
Темпы развития биотехнологий в последнее время возросли до предела, и связано это с появлением новой технологии под названием CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, Короткие палиндромные повторы, регулярно расположенные группами), которая обещает дешевые, эффективные и точные методы редактирования ДНК. В прошлом генная инженерия представляла собой медленный и весьма неточный процесс. В генной терапии, к примеру, «хороший ген» помещают в вирус (нейтрализованный заранее и, следовательно, безвредный). Затем вирус вводят пациенту, где он быстро заражает клетки организма и вставляет в них нужную ДНК. Цель всей процедуры — заставить ДНК встать на нужное место в хромосоме, заменив дефектный кусок генетического кода хорошим геном. Некоторые распространенные болезни вызываются одной-единственной «опечаткой» в ДНК, в том числе серповидно-клеточная анемия, болезнь Тея — Сакса и муковисцидоз. Есть надежда, что такие «опечатки» можно исправлять.
Однако результаты пока обескураживают. Зачастую организм воспринимает вирус как враждебный организм и начинает контрнаступление на него, вызывая вредные побочные эффекты. Кроме того, хороший ген часто встает в неверную позицию. После смертельного случая в Пенсильвании в 1999 г. многие эксперименты по генной терапии были прекращены.
Технология CRISPR помогает обойти многие из этих проблем. Механизм, лежащий в ее основании, появился в результате эволюции миллиарды лет назад. Ученые были озадачены тем, что бактерии развили у себя точные механизмы отражения вирусных атак. Как они умудрялись распознавать и обезвреживать смертельно опасные вирусы? Выяснилось, что эти бактерии содержали в себе фрагмент генетического материала вируса и могли использовать его как «фоторобот преступника», идентифицируя вторгшийся вирус. Опознав генную цепочку — и по ней вирус, — бактерия очень точно разрезала вирус в строго конкретной точке, тем самым нейтрализуя его и останавливая инфекцию.
Ученые сумели воспроизвести этот процесс, успешно заместив последовательность вирусного генома на ДНК другого типа и введя эту ДНК в клетку-мишень: это сделало «операцию на геноме» возможной. Поэтому CRISPR стремительно вытеснила прежние методы генной инженерии, ускорив процесс редактирования генов и сделав его более точным.
Читать дальшеИнтервал:
Закладка: