Сергей Труфанов - Наука логики Гегеля в доступном изложении
- Название:Наука логики Гегеля в доступном изложении
- Автор:
- Жанр:
- Издательство:Самара: Парус
- Год:1999
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Труфанов - Наука логики Гегеля в доступном изложении краткое содержание
впервые описал некоторые формы мысли. На основе его трудов позднее была составлена так называемая формальная логика, которая на сегодняшний день является общепризнанной. Около 200 лет назад
создал полный вариант логики и тем самым сделал её полноценной наукой – "Наукой логики". Однако изложил он её столь труднодоступным языком, что всё содержание и по сегодняшний день продолжает оставаться малопонятным.
В предлагаемой вниманию читателя книге
предпринята попытка изложить логику Гегеля в краткой и доступной форме.
Наука логики Гегеля в доступном изложении - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
сложения (вычитания),
умножения (деления),
возведения в степень (извлечение корня).
а) Как некоторые множества единиц , числа не равны между собой. Поэтому они подлежат сравнению друг с другом, которое производится посредством действий сложения и вычитания.
Если в одну группу выделено 5 человек, а в другую 10, то всего будет 15; при вычитании же этих чисел мы получим разницу в 5 человек. Перемножать эти числа или возводить их в степень нельзя, поскольку они "сосчитаны", т.е. обособлены от остального множества. Если 5 умножить на 10, то мы получим число 50. Но откуда оно могло взяться, если у нас "сосчитано" всего 15 человек (5 + 10), которых тем самым мы обособили от остального множества и сравниваем их между собой.
б) Поскольку числа, как кванты, не несут в себе никакой качественной специфики, постольку все они качественно однородны. "Мы с тобой одной крови!" - говорили герои Киплинга. То же самое могли бы сказать о себе и все числа, поскольку они не имеют в себе никаких качественных различий и отличаются друг от друга только своей численностью. Поэтому все числа принадлежат одному множеству, из которого они ранее были взяты. В этом множестве каждое число становится одним из сомножителей , а действия сложения и вычитания уступают место действиям умножения и деления . Причём одно и то же число может выступать здесь и как единство ( квант ), и как численность . Например: 7 х 9 = 63. По поводу этого действия мы можем сказать, что в полученном результате (63) число (квант) 7 содержится (числится) 9 раз. А можем сказать и наоборот, что число (квант) 9 содержится (числится) 7 раз.
Итак, за счёт действия нумерации мы обособляем некоторое количество единиц от множества и определяем их единство числом. Посредством действий сложения и вычитания мы сравниваем определяемые числом количества друг с другом. При умножении и делении мы возвращаем числа множеству, из которого они были ранее взяты.
в) Третий момент понятия числа – момент тождества его как единства (кванта) с самим собой как численностью , даёт действие по возведению в степень и по извлечению корня , но об этом действии речь будет идти несколько ниже.
§ 103. Одна и та же величина может рассматриваться: а) как экстенсивная величина и б) как интенсивная величина. Эти определения отличаются между собой тем, что экстенсивная определённость величины имеет свою численность вовне себя, а интенсивная определённость величины – внутри себя .
Так, например, если в одно прекрасное летнее утро мы выйдем к бескрайнему пшеничному полю и попытаемся определить, сколько же всего на нём зреет зёрен, то мы начнём свой счёт с одного зерна. Посчитаем: сколько зёрен находится в одном колоске, сколько колосков приходится на один квадратный метр, сколько – на один гектар, сколько – на всё это отдельно взятое поле, и сколько – на все посевы пшеницы по стране в целом. Это нам послужит примером экстенсивного нарастания величины.
Если же весной текущего года мы высадим одно зерно пшеницы, то к осени мы получим один колос, содержащий 20-30 зёрен. Если все эти зёрна высадить на следующий год, то мы получим урожай в 600-700 зёрен. Из этого количества семенного материала на третий год мы получим 15000 – 17000 зёрен и т.д., вплоть до достижения необходимой величины сбора зерновой пшеницы для потребностей всего населения страны. Это пример интенсивного нарастания величины.
Аналогичную картину мы сможем наблюдать и в том случае, если подвергнем исчислению количественные параметры всего человечества. Сосчитывая численность человечества в актуальном плане, мы получим пример нарастания его экстенсивной определённости: "Я" – один, в семье нас – 4, в городе – 1,3 млн., в области – 3,5 млн., в стране – 150 млн., в мире – около 6 млрд. человек. Рассматривая рост численности человечества в историческом плане, мы получим пример нарастания его интенсивной определённости. 40 тыс. лет назад, на момент появления современной формы человека разумного , число людей составляло от 1 до 2 млн. человек. За 10 тыс. лет до н.э. на планете проживало уже от 3 до 4 млн. человек. К началу нашей эры – около 250 млн. В настоящее время численность человечества составляет 6 млрд. человек.
§ 104. Экстенсивная и интенсивная определённости величины взаимно обуславливают друг друга. Интенсивно определённая величина содержит в себе в снятом виде экстенсивную определённость, а экстенсивно определённая величина – интенсивную определённость. Их единство даёт нам определение порядка или уровня величины. (В русских переводах Гегеля использован более точный, но менее удачный по смыслу термин – градус ).
При математических расчётах говорят о величинах разного порядка : единицах, десятках, сотнях, тысячах и т.д. Если же речь заходит о возможных боевых действиях, то говорят, что мы располагаем силами такого-то порядка: сотня сабель, тысяча штыков и т.д. Если оформляют в банке кредит, то выясняют, какого порядка требуется сумма: тысяча, сто тысяч, миллион.
На первый взгляд может показаться, что определение порядка непосредственно присуще только интенсивной определённости величины, поскольку она имеет свою численность внутри себя и отражает собой её абсолютный прирост: одно лето – один колос, другое лето – 20-30 колосков, третье дето – 625 колосков и т.д. Экстенсивная определённость в этом смысле менее наглядна, поскольку она имеет свою численность вовне себя, и выражает собой лишь её относительное нарастание в пределах уже имеющейся величины: одно зерно, 1 колос, 1 кв. м. посевов, 1 гектар посевов, и т.д. Но поскольку интенсивная определённость величины несёт в себе её экстенсивную определённость, постольку определение порядка в равной степени присуще им обоим.
Наглядным примером здесь могут служить те жизненные ситуации, когда речь заходит о необходимости восстановления численности поголовья скота или объёма сбора зерновых, если, конечно, это восстановление предполагается вести на собственной основе, а не за счёт поставок из-за границы. В таких ситуациях целью является достижение необходимого уровня (порядка) экстенсивно определённой величины, но расчёт сроков её достижения ведётся, исходя из порядка её интенсивного нарастания.
Другой пример. Проектируя сооружение объекта, определяют его сметную стоимость. Эта стоимость распределяется по всему циклу работ: а) стоимость проектных работ, б) стоимость возведения фундаментов, в) возведения вертикальных конструкций, г) сооружения крыши, д) отделочных работ, и т.д. Последовательность этих работ представляет собой порядок поэтапного нарастания экстенсивной величины стоимости строительства. Но будет ли этот порядок приведён в действие, и если да, то насколько он будет осуществлён, зависит от реального финансирования хода строительства, т.е., от порядка интенсивного нарастания величины стоимости строительства объекта.
Читать дальшеИнтервал:
Закладка: