Валентин Асмус - ЛОГИКА
- Название:ЛОГИКА
- Автор:
- Жанр:
- Издательство:ОГИЗ
- Год:1947
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Асмус - ЛОГИКА краткое содержание
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.
ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Галилей знал уже из опыта со стеклянной трубкой всасывающего насоса, что, как бы долго ни накачивали воду и как бы длинна ни была трубка насоса, поднятая насосом вода никогда не поднимается выше 32 футов. Этот установленный наблюдением факт внушил Галилею догадку, согласно которой «боязнь пустоты» не безгранична, но имеет предел. Ученик Галилея Торичелли совершенно отказался от предположения, будто природа боится пустоты. По его мысли, предел поднятия воды в насосе обусловлен тем, что на воду в трубке насоса давит земная атмосфера, имеющая ограниченную высоту над землёй и потому ограниченную тяжесть. Вес воды, поднятой до высоты 32 футов, равняется в точности весу столба атмосферы над поверхностью воды в сосуде, из которого накачивается вода в насос. Из этой догадки Торичелли сделал дедуктивный вывод. Если вес жидкости, поднятой в насосе, в точности должен быть равен весу столба атмосферы над поверхностью жидкости, то высота, на какую поднимается в каждом отдельном случае жидкость, очевидно, будет зависеть от удельного веса жидкости, взятой для испытания. Так, например, ртуть, которая почти в 14 раз тяжелее воды, очевидно, поднимется не на 32 фута, но всего лишь на 1/14 этой высоты, т. е. на 30 дюймов, так как столб ртути высотой в 30 дюймов весит столько, сколько столб , воды в 32 фута. И действительно, опыты, произведённые Торичелли, показали, что дедуктивный вывод, сделанный им из предположения Галилея, полностью оправдался: ртуть поднялась не выше 30 дюймов.
И всё же это совпадение результатов опыта с дедуктивно выведенным следствием теории не было в глазах многих окончательно убедительным. Совпадение это могло быть случайным, а подъём воды и ртути в насосе на неодинаковую высоту мог быть объяснён действием особой в каждом из обоих случаев причины.
Чтобы устранить всякие сомнения в истинности догадки Торичелли, Декарт придумал, а Паскаль и его зять Перье осуществили новый опыт. Из догадки Торичелли Декарт извлёк дедуктивный вывод, проверка которого должна была принести действительное разрешение вопроса. Необходимо, рассуждал Декарт, поставить такой опыт, который не оставлял бы никаких сомнений в том, что именно давление столба атмосферы над уровнем жидкости в сосуде обусловливает предел, до которого может быть поднята жидкость в насосе. Если бы удалось показать, что с изменением веса столба воздуха над уровнем жидкости будет изменяться и высота столба той же самой жидкости, поднятой в насосе, то догадка Торичелли тем самым была бы доказана. Но вес столба воздуха, продолжал рассуждать Декарт, зависит от высоты данной местности над уровнем моря. На вершине высокой горы на поверхность жидкости будет давить не весь столб атмосферы, простирающийся от уровня моря до её внешнего предела, но лишь часть этого столба. Поэтому на вершине высокой горы уровень жидкости, поднятой в насосе, будет более низким, чем уровень той же жидкости в том же насосе у подошвы горы: вес столба воздуха на вершине горы уравновесится меньшим столбом жидкости в насосе.
Все эти рассуждения Декарта представляли ряд дедуктивных выводов из догадки Торичелли. Необходимо было проверить, насколько согласуются с этими выводами действительные факты. Эта проверка была произведена Перье.
Изложенная история развития теории барометра представляет прекрасный пример взаимной связи индукции и дедукции. От найденных путём индукции, обычно ещё несовершенных и неточных, обобщений — через следствия этих обобщений, выведенные путём дедукции, — к проверке этих следствий посредством новых опытов и новых индукций — таков обычный путь научного исследования.
Оценка вероятности индуктивных умозаключений
§ 15.Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные .
Различие это, само по себе взятое, не решает, однако, вопроса о сравнительной научной ценности дедуктивных и индуктивных выводов. Правда, достоверность всегда остаётся выше вероятности. Однако вероятность может иметь различные степени. При известных условиях, степень вероятности может настолько возрастать, что практически вероятность может неограниченно приближаться к достоверности.
Так как индуктивные выводы дают, вообще говоря, вероятное знание, то научное значение этих выводов, очевидно, будет определяться степенью вероятности, достижимой для них в каждом отдельном случае и в каждом виде индукции.
Отсюда следует, что при оценке научного значения индукции необходимо познакомиться, во-первых , со способом, посредством которого может вообще производиться определение степени вероятности, во-вторых , с особыми приёмами, посредством которых определяется степень вероятности в случае индуктивных выводов .
§ 16.Выше мы уже рассмотрели основной приём исчисления вероятности и невероятности наступления события. Но так как математическое исчисление вероятности, приём которого указан, должно, очевидно, иметь логическое основание и опираться на логическую формулу, приложением которой к частной области являются математические формулы, то должны быть установлены и это логическое основание и эта логическая формула. Последнее необходимо ещё и потому, что в ряде случаев вероятность не может быть точно исчислена математически, но всё же может быть характеризована с определённостью, достаточной для того, чтобы взвесить сравнительное значение той или иной возможности, между которыми распределяется решение поставленного вопроса.
§ 17.С логической точки зрения заключение о вероятности имеет посылкой суждение о некоторой группе предметов. И действительно, заключение это должно содержать в себе полное указание всех возможных случаев, между которыми распределяется испытание. Если в закрытом ящике находятся перемешанные друг с другом восемь красных и четыре синих шара и если поставлен вопрос, какого цвета будет шар, который мы вынем из ящика, то совершенно очевидно, во-первых, что вынутым может быть только или красный, или синий шар. Поэтому первым приближением к решению вопроса будет суждение: «Вынутый шар может быть либо красным, либо синим». Суждение это — разделительное суждение, перечисляющее все исключающие друг друга возможности, между которыми распределяется выбор.
Однако ограничиться одним этим суждением в данном случае, — когда мы знаем не только о том, какие цвета могут встретиться среди шаров, положенных в ящик, но знаем, кроме того, сколько находится в ящике красных и сколько синих шаров, — значило бы не довести исследование до возможной при данных условиях определённости.
Читать дальшеИнтервал:
Закладка: