Валентин Асмус - ЛОГИКА

Тут можно читать онлайн Валентин Асмус - ЛОГИКА - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство ОГИЗ, год 1947. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валентин Асмус - ЛОГИКА краткое содержание

ЛОГИКА - описание и краткое содержание, автор Валентин Асмус, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)

ЛОГИКА - читать книгу онлайн бесплатно, автор Валентин Асмус
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 37.Но аксиомы даже не являются положениями безусловно очевидными.

По крайней мере некоторые из аксиом геометрии уже в древности казались далеко не безусловно очевидными. Таков, например, пятый постулат, или одиннадцатая аксиома Евклида, согласно которой через точку С (см. рис. 69), взятую вне данной прямой АВ , на плоскости, где находятся и С и АВ , можно провести только одну единственную прямую, например ОС ,которая при продолжении не пересекалась бы с прямой АВ , так что всякая другая прямая, проведённая через точку С и лежащая в той же плоскости, при достаточном продолжении пересечётся с прямой АВ .

Рис 69 Замеченная уже самим Евклидом независимость ряда предложений - фото 68

Рис. 69

Замеченная уже самим Евклидом независимость ряда предложений, доказываемых геометрией, от одиннадцатой аксиомы, появление этой аксиомы в «Началах» Евклида лишь после доказательства 28 теорем первой книги «Начал», внушали геометрам мысль доказать эту аксиому в качестве теоремы. Однако попытка доказательства её, предпринятая вслед за другими геометрами Лобачевским и так же, как и у них, неудавшаяся, привела Лобачевского к открытию, что допущение, противоречащее аксиоме о параллельных, в сочетании со всеми остальными аксиомами Евклида, будучи принято в качестве одного из исходных оснований геометрии, даёт возможность развить целую систему геометрии, которая, при всём противоречии этого основания непосредственному наглядному представлению о пространственных отношениях, нигде не запутывается во внутренних противоречиях и строго доказывает все свои предположения.

Придя к этой мысли, Лобачевский действительно развил эту систему геометрии. В геометрии Лобачевского вместо одиннадцатой аксиомы Евклида принимается другая аксиома. Согласно этой аксиоме, через точку С , лежащую вне прямой АВ , проходят две параллельные ей прямые КСКLCL 1 1 Стр. 369, прм. 1 Таких прямых может быть проведён целый пучок. . Каждый из равных острых углов DCK и DCL 1которые предположенные в геометрии Лобачевского параллели с двух сторон образуют с перпендикуляром CD , Лобачевский назвал углами параллельности в точке С относительно прямой АВ .

Лобачевский показал далее, что при исходных положениях, принятых им в качестве оснований новой геометрии, геометрия Евклида оказывается лишь частным случаем геометрии Лобачевского, а именно случаем, когда угол параллельности имеет постоянное значение и всегда равен прямому углу.

§ 38.Таким образом, аксиомы отнюдь не являются положениями очевидными в такой степени, чтобы очевидностью этой исключалась всякая возможность сомнения в их истинности и всякая необходимость требовать для них доказательства. Этим, между прочим, объясняется тот факт, что в истории математики крупнейшие учёные не раз пытались найти доказательства для некоторых аксиом. Так, философ Гоббс и философ-математик Лейбниц пытались — правда безуспешно — доказать аксиому о том, что целое больше своей части. К попыткам этого рода побуждает не только небезусловная очевидность аксиом, но также то, что при разработке математических наук всегда необходимо свести круг недоказуемых положений к возможно наименьшему числу. В сравнении с другими положениями аксиомы всё же являются наиболее очевидными утверждениями, так что усмотреть истинность аксиом легче, чем усмотреть истинность других положений, также обладающих очевидностью. Кроме того, от прочих очевидных положений аксиомы отличаются ещё тем, что они представляют наименьшую по числу совокупность положений, которые, будучи приняты данной наукой без доказательства в качестве исходных оснований этой науки, оказываются в соединении с определениями вполне достаточными для того, чтобы из них и из определений могли быть доказаны все прочий доложения науки, в том числе и некоторые положения, также обладающие очевидностью, но всё же доказуемые.

§ 39. Аксиомы иногда рассматриваются в качестве постулатов . Так называются положения, не доказываемые, так же как аксиомы, и составляющие вместе с определениями совокупность исходных оснований науки. Отличие постулата от аксиомы состоит только в том, что совокупность постулатов, полагаемых в качестве исходных оснований науки, устанавливается независимо от вопроса об их очевидности и с таким расчётом, чтобы принятые постулаты не противоречили друг другу и тем самым давали возможность развить из них также свободную от противоречий систему доказанных на их основе истин. Второе отличие аксиомы от постулата состоит в том, что аксиомы сравнительно с постулатами обладают большей общностью.

Наряду с аксиомами или постулатами в систему положений, принимаемых в качестве истинных, входят леммы . Леммой называется положение, относительно которого известно, что оно признано истинным в системе какой-либо другой науки и что оно применяется также в системе данной науки.

При этом истинность леммы может быть или непосредственно очевидной, или установленной в этой другой науке путём доказательства.

В системе физики леммами являются, например, все положения математики — независимо от того, рассматриваются они как аксиомы или же доказываются как теоремы.

Иногда различают теоремы и выведенные из них положения: следствия и дополнения. С точки зрения логики эти различия существенного значения не имеют.

§ 40.Не всякая попытка доказательства увенчивается успехом. В доказательствах, также как и в других видах логической деятельности мышления, возможны различные ошибки, лишающие доказательство его силы.

Так как всякое доказательство состоит из: 1) доказываемого тезиса, 2) оснований и 3) рассуждения, то возможные в доказательствах ошибки бывают: 1) либо ошибками относительно тезиса, 2) либо ошибками в основаниях, 3) либо, наконец, ошибками в рассуждении.

Ошибки относительно доказываемого тезиса

§ 41.Ошибки относительно доказываемого тезиса возникают в случаях, когда, несмотря на истинность и признанность оснований, а также несмотря на правильный ход умозаключений, т. е. несмотря на наличие необходимой логической связи между основаниями и заключением, само заключение не совпадает с тем тезисом, который должен быть доказан. Иными словами, ошибка здесь состоит не в том, что делают неправильный вывод, а в том, что, правильно сделав вывод из истинных оснований, ошибочно полагают, будто вывод этот есть то самое положение, которое взялись доказать, в то время как на деле вывод этот не совпадает с доказываемым тезисом и только по ошибке принимается за этот тезис.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Асмус читать все книги автора по порядку

Валентин Асмус - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ЛОГИКА отзывы


Отзывы читателей о книге ЛОГИКА, автор: Валентин Асмус. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x