Валентин Асмус - ЛОГИКА

Тут можно читать онлайн Валентин Асмус - ЛОГИКА - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство ОГИЗ, год 1947. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валентин Асмус - ЛОГИКА краткое содержание

ЛОГИКА - описание и краткое содержание, автор Валентин Асмус, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)

ЛОГИКА - читать книгу онлайн бесплатно, автор Валентин Асмус
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так, например, лицо, высказывающее суждение, может умышленно сказать ложь, т. е. выдать заведомо ложное сообщение за истинное. Но если, желая ложь выдать за истину, лицо это само ошибётся и по ошибке будет считать ложью то, что в действительности истинно, то в результате передачи рассматриваемое суждение может оказаться истинным.

§ 24.Генетическое опровержение возможно не только там, где первоначальное суждение ложно . Если первоначальное суждение само по себе истинно, но если при этом оно испытало изменение в звеньях передачи и если изменение это делает первоначальное суждение несовместимым с восходящим к нему суждением, то тем самым доказывается, что это последнее суждение ложно. Например, обвиняемый в получении взятки от лица Н утверждает, будто он взятки не брал.

Если это утверждение истинно, то в этом случае он, конечно, не мог ошибиться, т. е. относящееся к этому случаю первоначальное суждение должно было быть истинным. Но свидетельскими показаниями установлено, что в этом случае обвиняемый лжёт. Так как ложь не что иное, как замена первоначального суждения несовместимым с ним суждением, то отсюда следует, что утверждение обвиняемого ложно.

Роль практики и опыта в доказательствах

§ 25.Во всех науках и во всех научных доказательствах все понятия, которые входят в состав доказательства, ведут своё происхождение в конечном счёте из практики, из опыта. В этом отношении не составляют исключения и доказательства математических наук. Правда, понятия, которыми пользуется математик, отвлекаются от целого ряда свойств, которые принадлежат предметам этих понятий в нашем опыте. Математический круг, куб, шар и т. д. не существуют в опыте в том виде, в каком их мыслит ум геометра. И всё же даже самые отвлечённые понятия математики возникли в конечном счёте из опыта и на основе опыта. То же справедливо относительно математических определений и относительно аксиом , т. е. непосредственно очевидных истин, лежащих в основе всего математического знания. Как бы ни казались далёкими от опыта, а иногда даже противоречащими опыту эти определения и аксиомы, — все они в конце концов являются продуктами отвлечения от известных сторон опыта и не могли сложиться в мысли иначе, как на основе опыта.

§ 26.Так обстоит дело с понятиями, определениями и аксиомами математики. Сложнее обстоит дело с доказательствами. Во всех науках, кроме математических, доказательство всегда непосредственно связано с опытом. Это значит, что кроме той связи с опытом, без которой вообще не могло бы существовать никакое понятие, никакая аксиома, в науках этих в состав доказательства всегда входят такие части и такие данные, которые прямо предполагают обращение к опыту: к наблюдению, эксперименту и т. д.

Напротив, в математических науках доказательства — если рассматривать одну логическую их сторону, а не происхождение понятий, входящих в состав доказательств, — всегда ведутся таким образом, что в ходе доказательства математику не приходится прямо обращаться к опыту, помимо тех элементов опыта, которые уже содержатся в его понятиях, определениях и аксиомах. Иными словами, опыт входит в математические доказательства не непосредственно , как он входит в доказательства физика, химика, биолога, но лишь посредством понятий , которые некогда образовались на основе опыта, но в своём современном содержании являются отвлечёнными по отношению к этому опыту.

§ 27.Это различие между науками математическими и науками эмпирическими , т. е. доказывающими свои положения на основе прямого обращения к опыту, порождает различие в видах доказательства.

Доказательства математических наук, не требующие привлечения прямых данных опыта в самом ходе доказательства и опирающиеся на опыт лишь через посредство тех элементов опыта, которые содержатся в основных понятиях, определениях и аксиомах этих наук, называются математическими доказательствами.

Доказательства наук о природе, необходимо требующие привлечения прямых данных опыта в самом ходе доказательства и, таким образом, не ограничивающиеся теми элементами опыта, которые содержатся в их основных понятиях, называются эмпирическими доказательствами.

Из этих определений и объяснений ясно, что различие между этими двумя видами доказательства состоит вовсе не в том, что доказательства математических наук стоят якобы вне опыта, а доказательства эмпирических наук основываются на опыте. Все доказательства всех наук — математических так же, как и эмпирических, — предполагают опыт в качестве необходимой последней основы и проверочной инстанции всех своих истин и положений.

Различие между этими двумя видами доказательства обусловлено только тем, что в одном самым ходом доказательства требуется прямое обращение к данным опыта, в другом для осуществления доказательств достаточно той связи с опытом, которая дана уже в самом содержании понятий, входящих в состав доказательства.

Из сказанного видно, что различие между математическими и эмпирическими доказательствами — не безусловно. Ряд наук о природе, доказывающих свои истины при помощи прямого обращения к опыту, содержат в себе и такие части, в которых доказательства ведутся по методу доказательств математических наук. С другой стороны, и в математических науках математической форме доказательства часто предшествует обоснование, предполагающее прямое обращение к опыту, так что математическая форма доказательства вырабатывается впоследствии, когда доказываемый тезис, т. е. результат доказательства, стал уже известен из опыта. Примером такого перехода от найденного в опыте результата к его математическому и дедуктивному по форме обоснованию может служить уже упомянутая выше история архимедовского определения площади параболы.

Наконец, даже в строго математических по форме доказательствах последние основания, на которые эти доказательства опираются, а именно определения основных понятий науки и аксиомы, возникли в конечном счёте на основе опыта, хотя в том содержании, в каком они мыслятся наукой в настоящее время, они могут вследствие своей крайней отвлечённости казаться ни от какого опыта не зависящими.

Деление доказательств на математические и эмпирические зависит, как было показано, от того, ведётся ли доказательство без прямого обращения к опыту или же в состав доказательства в том или ином объёме входит также и прямое обращение к данным опыта.

§ 28.Доказательства различаются также и по ходу мысли в самом рассуждении . Доказательство, в котором рассуждение идёт от установленных или признанных положений — через ряд следствий, выведенных из этих положений, — к тезису или доказываемому суждению, называется прогрессивным доказательством. Название это показывает, что мысль в ходе рассуждения идёт всё время вперёд — от оснований — через рассуждение — к доказываемому тезису.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Асмус читать все книги автора по порядку

Валентин Асмус - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ЛОГИКА отзывы


Отзывы читателей о книге ЛОГИКА, автор: Валентин Асмус. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x