Валентин Асмус - ЛОГИКА

Тут можно читать онлайн Валентин Асмус - ЛОГИКА - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство ОГИЗ, год 1947. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валентин Асмус - ЛОГИКА краткое содержание

ЛОГИКА - описание и краткое содержание, автор Валентин Асмус, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)

ЛОГИКА - читать книгу онлайн бесплатно, автор Валентин Асмус
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но если мы не можем сразу найти такое суждение, которое, будучи несовместимым с данным, было бы в то же время заведомо истинным, то опровержение тезиса принимает ту форму обусловливающего доказательства, о которой шла речь выше. А именно: строится умозаключение, в котором тезис, т. е. опровергаемое суждение, является одной из посылок. Все остальные посылки умозаключения подбираются истинные, логическая связь между ними устанавливается правильная. Получив — по правилам вывода — заключение, находят затем другое суждение с таким расчётом, чтобы оно было логически несовместимым с нашим заключением и в то же время чтобы оно было истинным. Найдя такое суждение, тем самым опровергают заключение. В свою очередь опровержение заключения обнаруживает ошибочность умозаключения, из которого заключение было выведено. Но в чём может состоять в этом случае ошибочность умозаключения? Так как логическая связь в нём правильная и так как все посылки, кроме той, которая является тезисом доказательства, истинны, то ложным должен быть только тезис.

Рис 67 Пример апагогического доказательства В геометрии доказывается теорема - фото 66

Рис. 67

Пример апагогического доказательства. В геометрии доказывается теорема (см. рис. 67), согласно которой при условии если два равных угла АОВ и COD имеют общую вершину О и две стороны ОВ и ОС на одной прямой линии, то и две другие стороны ОА и OD составляют одну прямую линию, и потому углы АОВ и COD — вертикальные. Доказывается теорема следующим образом. Положим, что АОD — не прямая, а ломаная линия. Положим, далее, что ОЕ есть продолжение стороны АО . Тогда углы АОВ и СОЕ как углы, составленные пересечением двух прямых линий, будут углы вертикальные и, следовательно, равные между собой. Но по положению ∠DОС равен ∠АОВ . Две величины, равные порознь третьей, равны между собой. Поэтому ∠ЕОС должен равняться ∠СОD (так как ∠ЕОС и ∠COD равны порознь каждый ∠АОВ ).

Но ∠ЕОС , очевидно, не может равняться ∠СОD , так как ∠СОЕ есть только часть ∠СОD . Итак, предположение, будто АОD не есть прямая линия, как предположение, приводящее к нелепому заключению, будто часть равна своему целому, ложно. Но если ложно, что АОD не есть прямая линия, то должно быть истинным, что АОD — прямая и что углы AОВ и СОD — вертикальные.

Присматриваясь к ходу этого рассуждения, мы видим, что оно вполне подходит под схему рассматриваемой разновидности обусловливающего доказательства. Задачей рассуждения было доказательство теоремы посредством опровержения противоречащего ей тезиса. Опровергаемый тезис был сделан одной из посылок умозаключения. Все остальные посылки, кроме тезиса, оказались истинными. Само умозаключение также оказалось правильным. Полученное из этого вывода заключение (равенство ∠ЕОС ∠СОD ), сопоставленное с аксиомой о том, что целое больше своей части, оказалось несовместимым с нею.

Тем самым было удостоверено, что заключение, будто ∠ЕОС равен ∠COD , ложно. Но ложность заключения означает ложность того умозаключения, из которого это заключение добыто. В свою очередь исследование ложности умозаключения приводит к следующему разделительному силлогизму: «Источником ошибки в нашем умозаключении могла быть либо ложность посылок, либо ошибочность логической связи между ними. Но в данном случае логическая связь была правильная, все посылки, кроме той, которая является опровергаемым тезисом, — тоже правильные. Стало быть, ложен опровергаемый тезис».

§ 18.Логическая схема рассмотренной разновидности обусловливающего доказательства сама по себе совершенно проста и ясна. Однако при её осуществлении на практике часто приходится преодолевать значительные трудности.

Трудности эти возникают обычно в той части доказательства, где заключению, выведенному из основного умозаключения, необходимо противопоставить другое — несовместимое с ним и в то же время заведомо истинное суждение.

И действительно, для успешного решения этой задачи требуется, чтобы заключение, добываемое из основного умозаключения, непременно было ложным , а противопоставляемое ему и несовместимое с ним суждение было непременно истинным .

Что касается ложности заключения, то, вообще говоря, как заключение вывода, в составе которого имеется ложная посылка (опровергаемый тезис), заключение это должно быть ложным. Однако иногда при ложной большей посылке заключение силлогизма может случайно оказаться истинным. Например, из посылок «все студенты изучают французский язык» и «Николаев — студент» получается заключение «Николаев изучает французский язык». Может случиться, что, несмотря на ложность большей посылки, утверждающей, будто все студенты изучают французский язык, Николаев случайно окажется принадлежащим к той части студентов, которые, не исчерпывая собой всех студентов, действительно изучают французский язык. В этом случае ложность одной из посылок не препятствует истинности тезиса. Объясняется это не тем, что истинность эта логически следует из ложности посылки, а тем, что она не зависит от количества большей посылки: чтобы студент Николаев оказался принадлежащим к изучающим французский язык, нет необходимости в том, чтобы все студенты изучали этот язык. Для этого достаточно, чтобы хотя бы часть студентов изучала этот язык и чтобы Николаев оказался принадлежащим именно к этой части.

Зная, что при известных условиях наличие в числе посылок одной ложной может сочетаться с истинностью заключения, мы должны считаться с этой возможностью при разработке апагогических доказательств. Так как в этих доказательствах заключение основного умозаключения необходимо должно оказаться ложным , то посылки этого умозаключения должны подбираться с таким расчётом, чтобы сочетание ложного тезиса, составляющего одну из посылок умозаключения, с другими истинными его посылками дало в заключении непременно ложное суждение.

Напротив, суждение, противопоставляемое заключению, как несовместимое с ним, обязательно должно быть истинным . Однако далеко не всегда истинность суждения, противопоставляемого заключению и несовместимого с ним, оказывается непререкаемой для тех, к кому обращается доказательство. Во многих отраслях знания суждение, истинное в глазах одних, представляется ложным или по крайней мере сомнительным для других. Но если суждение, противопоставляемое несовместимому с ним тезису, представляется ложным, то самый тезис уже не будет оцениваться в качестве ложного, и, таким образом, опровержение тезиса, составляющее центр всего доказательства, окажется недостигнутым.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Асмус читать все книги автора по порядку

Валентин Асмус - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ЛОГИКА отзывы


Отзывы читателей о книге ЛОГИКА, автор: Валентин Асмус. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x