Валентин Асмус - ЛОГИКА
- Название:ЛОГИКА
- Автор:
- Жанр:
- Издательство:ОГИЗ
- Год:1947
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Асмус - ЛОГИКА краткое содержание
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.
ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
—————————————————————
След., некоторые атомисты утверждали возможность свободы.
В этом силлогизме субъектом заключения «некоторые атомисты утверждали возможность свободы» является, несмотря на частный характер заключения, именно группа в целом: вся группа атомистов характеризуется как такая, внутри которой как её часть могут быть найдены лица, допускавшие возможность свободы.
Четвёртая фигура и её особые правила
§ 43.Рассмотренные четырнадцать правильных модусов были установлены основателем науки логики, древнегреческим философом Аристотелем (384—322 до н. э.). Уже ближайшие продолжатели логических работ Аристотеля обратили внимание на то, что в первой фигуре кроме указанных Аристотелем четырёх модусов возможны ещё пять. Модусы эти возможны в случае, если средний термин является предикатом в большей посылке и субъектом в меньшей. (В аристотелевской первой фигуре средний термин является, напротив, субъектом в большей посылке и предикатом — в меньшей.)
Спустя 500 лет после Аристотеля учёный Гален выделил правильные модусы, получающиеся при таком расположении терминов, в новую — четвёртую — фигуру.
Схема четвёртой фигуры:
Р—М
М—S
———
S—P
Хотя четвёртая фигура теоретически возможна и даёт пять правильных модусов, в действительном мышлении выводы по четвёртой фигуре не встречаются. Искусственность четвёртой фигуры состоит в том, что положение меньшего и большего терминов в выводе обратно положению этих терминов в посылках. Поэтому нельзя придумать ни одного примера вывода по четвёртой фигуре, который не был бы искусственным.
Например:
Bce тюлени — ластоногие. | М—Р | |
Ни одно ластоногое не есть рыба. | Р—М | |
———————————— | ——— | |
Ни одна рыба не есть тюлень. | М—S |
Здесь естественным был бы, конечно, вывод по первой фигуре:
Ни одно ластоногое не есть рыба. | М—Р | |
Все тюлени—ластоногие. | S—М | |
———————————— | ——— | |
Ни один тюлень не есть рыба. | S—P |
Ввиду совершенной искусственности четвёртой фигуры отметим только важнейшие её особенности без подробного их рассмотрения и выведения.
Выводы по четвёртой фигуре могут быть частноутвердительные, общеотрицательные и частноотрицательные. Общеутвердительных выводов четвёртая фигура (так же как вторая и третья) не даёт. Общий вывод по четвёртой фигуре может быть только отрицательный. При утвердительности большей посылки меньшая посылка в четвёртой фигуре должна быть общей. При отрицательности одной из посылок большая посылка в четвёртой фигуре должна быть общей.
Правильные модусы четвёртой фигуры: AAI, АЕЕ, IAI, ЕАО, ЕIO. Их искусственные названия — Bramantip, Camenes, Dimaris, Fesapo, Fresison.
Таким образом, учитывая возможность добавочных пяти модусов четвёртой фигуры, получаем всего девятнадцать правильных модусов простого категорического силлогизма.
Сведение всех фигур простого категорического силлогизма к первой фигуре
§ 44.Каждая из фигур со всеми своими модусами самостоятельна и имеет свою особую область применения. Но так как отношение между меньшим и бо́льшим терминами, составляющее вывод, определяется отношениями между всеми тремя понятиями силлогизма и так как отношения эти могут раскрываться в различном порядке — смотря по тому, с какого понятия. мы начнём рассмотрение, — то вывод, сделанный по какой-нибудь фигуре силлогизма, может быть сделан и по любой другой (если только этому не противоречит качество и количество вывода). Такое изменение вывода, сделанного по какой-либо фигуре силлогизма, в вывод, сделанный по другой фигуре, называется сведением.
В логике подробно устанавливаются правила сведения всех фигур к первой фигуре — ввиду того значения, какое выводы по первой фигуре, особенно модус Barbara, имеют в научном и повседневном мышлении.
Обычно выводы по третьей фигуре сводятся к выводам по первой фигуре путём обращения одной из посылок.
Например, вывод по третьей фигуре
Все киты — млекопитающие. | М—Р | |
Все киты — водные животные. | S—М | |
————————————————— | ——— | |
Некоторые водные животные — млекопитающие | S—P |
может быть изменён в вывод по первой фигуре. Для этого, оставив бо́льшую посылку без изменения, обращаем меньшую посылку: «все киты — водные животные». Обращение общеутвердительного суждения, выражающего подчинение понятия S понятию Р даёт, как известно, суждение частноутвердительное: «некоторые водные животные — киты». Теперь соединим оставленную без изменения большую посылку с обращённой меньшей:
Все киты—млекопитающие.
Некоторые водные животные—киты.
В посылках этих термины расположены по схеме уже не третьей, а первой фигуры:
М—Р
S—M
———
S—P
Вывод по первой фигуре (по модусу Darii) будет: «некоторые водные животные — млекопитающие». Как видим, вывод —тот же самый, который в первом случае был сделан по третьей фигуре (по модусу Darapti).
§ 45.Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов по второй и по третьей фигуре к выводу по первой.
Рассмотрим силлогизм:
Все планеты обращаются вокруг солнца. | Р—М | |
Некоторые светила не обращаются вокруг солнца. | S—М | |
————————————————— | ——— | |
Некоторые светила — не планеты. | S—P |
Силлогизм этот, как видно из расположения терминов, есть вывод по второй фигуре (модус Ваrосо). Для сведения его к выводу по первой фигуре будем рассуждать следующим образом. Допустим, что заключение нашего вывода ложно, т. е. допустим, что все светила — планеты. Оставим бо́льшую посылку без изменения и присоединим к ней в качестве меньшей посылки суждение «все светила — планеты», т. е. суждение, противоречащее выводу:
Все планеты обращаются вокруг солнца.
Все светила—планеты.
Посылки эти образуют посылки правильного вывода по первой фигуре. Самый вывод получается, очевидно, по модусу Barbara:
Все планеты обращаются вокруг солнца. | М—Р | |
Все светила—планеты. | S—М | |
————————————————— | ——— | |
Все светила обращаются вокруг солнца. | S—P |
Сравним теперь полученный нами новый вывод с меныцей посылкой первоначального силлогизма: «некоторые светила не обращаются вокруг солнца».Очевидно, вывод этот противоречит меньшей посылке.
Читать дальшеИнтервал:
Закладка: