Валентин Асмус - ЛОГИКА
- Название:ЛОГИКА
- Автор:
- Жанр:
- Издательство:ОГИЗ
- Год:1947
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Асмус - ЛОГИКА краткое содержание
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.
ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Отсюда, естественно, заключаем, что наше допущение, будто «все светила — планеты», ложно, так как оно противоречит одной из принятых нами посылок. Но это значит, что должно быть истинным суждение, противоречащее сделанному допущению, т. е. суждение: «некоторые светила — не планеты».
Итак, мы убедились в истинности вывода по второй фигуре посредством сведения этого вывода к выводу по первой. Сведение это было необходимо для того, чтобы убедиться в нелепости суждения, противоречащего выводу.
Этот приём сведения называется «reductio ad absurdum» — «приведением к нелепости». Посредством этого приёма сводятся к выводам по первой фигуре: 1) модус Ваrосо второй фигуры и 2) модус Bocardo третьей. Буква r в названиях этих модусов показывает, что в них сведение к выводу по первой фигуре достигается, посредством reductio ad absurdum. Буквы В, С, D, F в названиях модусов второй и третьей фигур показывают, что после сведения модусы эти превращаются соответственно в модусы Barbara, Celarent, Darii, Ferio первой фигуры. Буквы s и р, стоящие в названиях модусов второй и третьей фигур после гласных, указывают, что для сведения посылка, обозначенная этими гласными, должна быть обращена. При этом буква s показывает, что при обращении количество посылки остаётся прежнее, а буква р — что при обращении общая посылка становится частной.
Например, при сведении модуса Cesare второй фигуры, мы, взглянув на название модуса Cesare, сразу видим, что после сведения должен получиться модус Celarent первой фигуры (на это указывает буква С в слове Cesare), что само сведение должно быть произведено путём обращения большей посылки (на это указывает буква s, поставленная после е, знака большей посылки) и что бо́льшая посылка остаётся после обращения общей (это видно из того, что после е стоит не р, a s). И действительно, вывод по второй фигуре модуса Cesare
Споровые растения не имеют цветов.
Злаки — растения, имеющие цветы.
—————————————
Злаки — не споровые растения.
сводится к выводу по первой фигуре модуса Celarent:
Растения, имеющие цветы, — не споровые растения.
Злаки — растения, имеющие цветы.
—————————————
Злаки — не споровые растения.
Сведение достигнуто здесь посредством обращения большей посылки: «споровые растения не имеют цветов». Как общеотрицательное суждение бо́льшая посылка после обращения остаётся общей: «растения, имеющие цветы, — не споровые».
§ 46.Так как условные названия модусов заключают в себе указания на качество и количество посылок и заключения в правильных выводах, а также указания на приёмы сведения выводов по второй, третьей и четвёртой фигурам к выводам по первой, то в целях удобного запоминания и обозрения всех модусов и их особенностей было придумано латинское стихотворение, перечисляющее все эти названия по отдельным фигурам. Вот оно:
Barbara, Celarent, Darii, Ferioque prioris ;
Cesare, Camestres, Festino, Baroco, secundae;
Tertia Darapti, Disamis, Datisi, Felapton,
Bocardo, Ferison habet; quart' insuper addit
Bramantip, Camenes, Dimaris, Fesapo, Fresison.
Аксиома силлогизма и две её формулы
§ 47.Мы рассмотрели все фигуры и все правильные модусы силлогизма. Мы видели, что при соблюдении известных правил, которым должны подчиняться посылки и отношения между входящими в посылки терминами, посылки приводят к правильным выводам. Это значит, другими словами, что, признав такие посылки истинными, мы не можем не признать истинными также и те выводы, которые обосновываются посылками.
Хотя в различных фигурах, а внутри одной и той же фигуры в различных её модусах способы обоснования выводов оказываются, как мы видели, различными, всё же во всех силлогистических выводах есть общее им всем основание, в силу которого, признав истинными посылки, мы необходимо должны признать истинными и вытекающие из них выводы.
Это общее всем силлогизмам основание выражается в следующей формуле: «признак признака некоторой вещи есть признак самой вещи; то, что противоречит признаку некоторой вещи, противоречит самой вещи». Формула эта выражает в наиболее общем виде логическую связь понятий S, М и Р, на которой основывается вывод и которая делает этот вывод необходимым. Рассмотрим, например, силлогизмы:
Все галоиды встречаются в виде солей. | Ни одно споровое растение не размножается семенами. | |
Все хлористые соединения — галоиды. | Все грибы — споровые растения. | |
———————————— | ——————————— | |
Все хлористые соединения встречаются в виде солей. | Ни один гриб не размножается семенами. |
В первом из этих силлогизмов бо́льшая посылка устанавливает, что принадлежность к солям есть признак галоидов. Меньшая посылка устанавливает, что признак принадлежности к галоидам есть признак хлористых соединений. Из обеих посылок видно, что признак принадлежности к солям оказался признаком признака некоторой вещи. Отсюда необходимо следует вывод, что принадлежность к солям есть вместе с тем признак самой вещи, или что «все хлористые соединения принадлежат к солям».
Во втором силлогизме меньшая посылка выясняет, что «принадлежность к споровым» есть признак вещи, называемой «грибами». Большая посылка выясняет, что «размножение семенами» противоречит этому признаку вещи. Отсюда необходимо следует, что, находясь в противоречии с признаком вещи, признак «размножения семенами» находится в противоречии и с самой вещью, т. е. что «ни один гриб не размножается семенами».
Формула, выражающая общее всем силлогизмам основание, называется аксиомой силлогизма . Название это показывает, что правило, выражаемое аксиомой силлогизма, не доказывается. Оно очевидно и лежит в основе всех силлогистических умозаключений.
Аксиома силлогизма выражает сущность силлогизма. Все изложенные выше правила силлогизма, относящиеся к числу терминов силлогизма, к качеству и количеству посылок, к качеству и количеству заключения, представляют не что иное, как различные применения аксиомы «признак признака некоторой вещи есть признак самой вещи».
§ 48.Но этого мало. Аксиома силлогизма выражает, кроме того, значение, какое для силлогизмов имеют логические законы мышления: закон тождества, закон противоречия, закон исключённого третьего и в особенности закон достаточного основания.
И действительно, предикат Р, высказываемый об М, оказывается в силлогизме тем основанием, которое определяет все вытекающие из него следствия: правильным может быть только вывод, имеющий достаточное основание в посылках; достаточным же основанием для суждения о принадлежности признака предмету является то, что выражающий свойство предмета признак есть, как видно из посылок, признак признака самого предмета.
Читать дальшеИнтервал:
Закладка: