Валентин Асмус - ЛОГИКА
- Название:ЛОГИКА
- Автор:
- Жанр:
- Издательство:ОГИЗ
- Год:1947
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Асмус - ЛОГИКА краткое содержание
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.
ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
§ 41.Исключив из числа шестнадцати арифметически возможных модусов третьей фигуры все модусы, противоречащие общим правилам всех фигур и специальному правилу третьей, получаем шесть модусов третьей фигуры: АА, ЕА, IA, AI, ОА, EI.
В модусе АА вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено AAI.
Пример: «Все киты — млекопитающие, все киты — водные животные, следовательно, некоторые водные животные — млекопитающие».
В модусе ЕА вывод получается частноотрицательный (О), и всё строение модуса может быть обозначено ЕАО.
Пример: «Ни один гриб не имеет хлорофила, все грибы — растения, следовательно, некоторые растения не имеют хлорофила».
В модусе IA вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено IAI.
Пример: «Некоторые планеты имеют спутников, все планеты вращаются вокруг солнца, следовательно, некоторые тела, вращающиеся вокруг солнца, имеют спутников».
В модусе AI вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено AII.
Пример: «Все бобры — водные животные, некоторые бобры строят себе домики для жилья, следовательно, некоторые животные, строящие себе домики для жилья, водные животные».
В модусе ОА вывод получается частноотрицательный (О), и всё строение модуса может быть обозначено ОАО.
Пример: «Некоторые планеты не имеют спутников, все планеты вращаются вокруг солнца, следовательно, некоторые тела, вращающиеся вокруг солнца, не имеют спутников».
Наконец, в модусе EI вывод получается также частноотрицательный (О), и всё строение модуса может быть обозначено ЕIO.
Пример: «Ни один аспирант не есть студент, некоторые аспиранты обязаны слушать лекции, следовательно, некоторые лица, обязанные слушать лекции, — не студенты».
Условные имена шести модусов третьей фигуры следующие: Darapti, Felapton, Disamis, Datisi, Bocardo, Ferison.
Таким образом, все три фигуры простого категорического силлогизма дают всего четырнадцать правильных модусов. Другие модусы в этих фигурах невозможны, т. е. не могут быть основанием для правильного вывода.
Логический ход умозаключения по третьей фигуре
§ 42.Умозаключения по третьей фигуре имеют в самом логическом ходе вывода особенности, отличающие их от умозаключений первой и второй фигуры. От умозаключений второй фигуры, в которых логический ход умозаключения основывается на сличении предикатов обеих посылок, умозаключения третьей фигуры отличаются тем, что в них, как и в умозаключениях первой фигуры, сличаются субъекты обеих посылок.
Рассмотрим умозаключение:
Все бобры — водные животные. | М—Р | |
Все бобры — млекопитающие. | М—S | |
————————————————— | ——— | |
Некоторые млекопитающие — водные животные. | S—P |
Принадлежность части млекопитающих к водным животным выводится из выясненной в посылках принадлежности всех бобров и к водным животным и к млекопитающим.
В то же время умозаключения третьей фигуры отличаются и от умозаключений первой фигуры. В умозаключениях первой фигуры логический ход вывода состоит в том, что, установив в меньшей посылке принадлежность какого-нибудь предмета к известной группе предметов, мы переносим на отдельный предмет, мыслимый в меньшей посылке, предикат, характеризующий группу в целом. Перенесение это основывается на том, что предикат большей посылки есть не только предикат всей группы в целом, но вместе с тем и предикат каждого её члена порознь.
Рассмотрим силлогизм:
Все амфибии — позвоночные.
Все лягушки — амфибии.
——————————
Все лягушки — позвоночные.
Установив в меньшей посылке принадлежность лягушек к амфибиям и установив в большей посылке, что принадлежность к позвоночным есть свойство не только всей группы амфибий в целом, но и каждого члена группы амфибий, мы можем приписать всем лягушкам принадлежность к позвоночным.
В умозаключениях третьей фигуры логический ход вывода другой. Хотя в заключениях этой фигуры общими посылками обосновывается частный вывод, смысл умозаключения состоит не в том только, чтобы высказать предикат относительно некоторых членов группы. Когда из посылок «все бобры — водные животные», «все бобры — млекопитающие» выводят, что «некоторые млекопитающие — водные животные», смысл этого заключения не только в том, чтобы известной части млекопитающих приписать принадлежность к водным животным. Смысл заключения в том, чтобы предикат «водные животные» указать не только в качестве предиката к субъекту «некоторые млекопитающие», но также в качестве возможного предиката, или определения группы млекопитающих.То новое , что мы узнаём из этого силлогизма, заключается не в мысли, что часть млекопитающих — водные животные. Это мы, в сущности, знаем уже из посылки «все бобры — водные животные». Новое, что мы узнаём из этого силлогизма, есть мысль, что млекопитающие могут быть водными животными, иными словами, что принадлежность к водным животным есть возможная характеристика всей группы млекопитающих, хотя в действительности эта характеристика всегда может прилагаться, как видно из заключения силлогизма, только к части членов группы млекопитающих. Иными словами, новое, доставляемое этим силлогизмом, состоит в мысли, что группа млекопитающих как целое, как группа характеризуется тем, что некоторые члены этой группы, например бобры, могут быть водными животными.
То, что заключение силлогизма третьей фигуры может быть только частным суждением , ни в какой мере не противоречит тому, что вывод третьей фигуры есть, в сущности вывод о группе предметов в целом. Частный характер этих выводов показывает только то, что возможность отнесения предиката заключения к целой группе ограничена какой-то, точно не определённой частью группы: хотя принадлежность к водным животным есть возможная принадлежность всей группы млекопитающих и хотя в этом смысле можно сказать, что субъектом в заключении является сама группа млекопитающих в целом, — всё же эта характеристика целой группы остаётся здесь неполной и недостаточной: мы не знаем из заключения, какая именно часть млекопитающих — водные животные.
Применение силлогизмов третьей фигуры для опровержения ошибочных суждений о группе доказывает справедливость сказанного. Так, утверждению «атомизм несовместим с учением о возможности свободы» можно в качестве опровержения противопоставить следующий силлогизм третьей фигуры:
Эпикур был атомистом.
Эпикур утверждал возможность свободы.
Читать дальшеИнтервал:
Закладка: